References

Anselin, Luc. 1988. Spatial Econometrics: Methods and Models. Studies in Operational Regional Science. Dordrecht: Kluwer.
———. 1995. “Local Indicators of Spatial Association-LISA.” Geographical Analysis 27 (2): 93–115. https://doi.org/10.1111/j.1538-4632.1995.tb00338.x.
———. 2003. “Spatial Externalities, Spatial Multipliers, and Spatial Econometrics.” International Regional Science Review 26 (2): 153–66. https://doi.org/10.1177/0160017602250972.
Anselin, Luc, and Anil K. Bera. 1998. “Spatial Dependence in Linear Regression Models with an Introduction to Spatial Econometrics.” In Handbook of Applied Economic Statistics, edited by Aman Ullah and David E. A. Giles, 237–89. New York: Dekker.
Anselin, Luc, Anil K. Bera, Raymond Florax, and Mann J. Yoon. 1996. “Simple Diagnostic Tests for Spatial Dependence.” Regional Science and Urban Economics 26 (1): 77–104. https://doi.org/10.1016/0166-0462(95)02111-6.
Anselin, Luc, and Nancy Lozano-Gracia. 2008. “Errors in Variables and Spatial Effects in Hedonic House Price Models of Ambient Air Quality.” Empirical Economics 34 (1): 5–34. https://doi.org/10.1007/s00181-007-0152-3.
Anselin, Luc, Renan Serenini, and Pedro Amaral. 2024. “Spatial Econometric Model Specification Search: Another Look.” https://doi.org/10.13140/RG.2.2.10650.86721.
Appelhans, Tim, Florian Detsch, Chritoph Reudenbach, and Stefan Woellauer. 2021. “Mapview: Interactive Viewing of Spatial Data in R.”
Beron, Kurt J., and Wim P. M. Vijverberg. 2004. “Probit in a Spatial Context: A Monte Carlo Analysis.” In Advances in Spatial Econometrics: Methodology, Tools and Applications, edited by Luc Anselin, Florax, Raymond J. G. M, and Sergio J. Rey, 169–95. Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-05617-2‗ 8.
Betz, Timm, Scott J. Cook, and Florian M. Hollenbach. 2020. “Spatial Interdependence and Instrumental Variable Models.” Political Science Research and Methods 8 (4): 646–61. https://doi.org/10.1017/psrm.2018.61.
Bivand, Roger S., and Colin Rudel. 2018. “Rgeos: Interface to Geometry Engine - Open Source (’GEOS’).”
Bivand, Roger, Giovanni Millo, and Gianfranco Piras. 2021. “A Review of Software for Spatial Econometrics in R.” Mathematics 9 (11): 1276. https://doi.org/10.3390/math9111276.
Bivand, Roger, and Gianfranco Piras. 2015. “Comparing Implementations of Estimation Methods for Spatial Econometrics.” Journal of Statistical Software 63 (18): 1–36. https://doi.org/10.18637/jss.v063.i18.
Bivand, Roger, and David W. S. Wong. 2018. “Comparing Implementations of Global and Local Indicators of Spatial Association.” TEST 27 (3): 716–48. https://doi.org/10.1007/s11749-018-0599-x.
Boillat, Sébastien, M. Graziano Ceddia, and Patrick Bottazzi. 2022. “The Role of Protected Areas and Land Tenure Regimes on Forest Loss in Bolivia: Accounting for Spatial Spillovers.” Global Environmental Change 76 (September): 102571. https://doi.org/10.1016/j.gloenvcha.2022.102571.
Brunsdon, Chris, A. Stewart Fotheringham, and Martin E. Charlton. 1996. “Geographically Weighted Regression: A Method for Exploring Spatial Nonstationarity.” Geographical Analysis 28 (4): 281–98. https://doi.org/10.1111/j.1538-4632.1996.tb00936.x.
Burridge, Peter, J. Paul Elhorst, and Katarina Zigova. 2016. “Group Interaction in Research and the Use of General Nesting Spatial Models.” In Spatial Econometrics: Qualitative and Limited Dependent Variables, edited by Badi H. Baltagi, James P. LeSage, and R. Kelley Pace, 37:223–58. Advances in Econometrics. Emerald Group Publishing Limited. https://doi.org/10.1108/S0731-905320160000037016.
Cliff, Andrew, and Keith Ord. 1972. “Testing for Spatial Autocorrelation Among Regression Residuals.” Geographical Analysis 4 (3): 267–84. https://doi.org/10.1111/j.1538-4632.1972.tb00475.x.
Cook, Scott J., Jude C. Hays, and Robert J. Franzese. 2020. “Model Specification and Spatial Interdependence.” In The Sage Handbook of Research Methods in Political Science and International Relations, edited by Luigi Curini and Robert Franzese, 1st ed, 730–47. Thousand Oaks: SAGE Inc.
Croissant, Yves, and Givanni Millo, eds. 2018. “Spatial Panels.” In Panel Data Econometrics with R, 245–84. Chichester, UK: John Wiley & Sons, Ltd. https://doi.org/10.1002/9781119504641.ch10.
Drukker, David M., Peter Egger, and Ingmar R. Prucha. 2013. “On Two-Step Estimation of a Spatial Autoregressive Model with Autoregressive Disturbances and Endogenous Regressors.” Econometric Reviews 32 (5-6): 686–733. https://doi.org/10.1080/07474938.2013.741020.
Elhorst, J. Paul. 2012. “Dynamic Spatial Panels: Models, Methods, and Inferences.” Journal of Geographical Systems 14 (1): 5–28. https://doi.org/10.1007/s10109-011-0158-4.
———. 2014. Spatial Econometrics: From Cross-Sectional Data to Spatial Panels. SpringerBriefs in Regional Science. Berlin and Heidelberg: Springer. https://doi.org/10.1007/978-3-642-40340-8.
Elhorst, J. Paul, and S. Halleck Vega. 2017. “The SLX Model: Extensions and the Sensitivity of Spatial Spillovers to W.” Papeles de Economía Española 152: 34–50.
Elhorst, J. Paul, Pim Heijnen, Anna Samarina, and Jan P. A. M. Jacobs. 2017. “Transitions at Different Moments in Time: A Spatial Probit Approach.” Journal of Applied Econometrics 32 (2): 422–39. https://doi.org/10.1002/jae.2505.
Fingleton, Bernard, Daniel Olner, and Gwilym Pryce. 2020. “Estimating the Local Employment Impacts of Immigration: A Dynamic Spatial Panel Model.” Urban Studies 57 (13): 2646–62. https://doi.org/10.1177/0042098019887916.
Fischer, Manfred M., Monika Bartkowska, Aleksandra Riedl, Sascha Sardadvar, and Andrea Kunnert. 2009. “The Impact of Human Capital on Regional Labor Productivity in Europe.” Letters in Spatial and Resource Sciences 2 (2-3): 97–108. https://doi.org/10.1007/s12076-009-0027-7.
Florax, Raymond, Hendrik Folmer, and Sergio J. Rey. 2003. “Specification Searches in Spatial Econometrics: The Relevance of Hendry’s Methodology.” Regional Science and Urban Economics 33 (5): 557–79. https://doi.org/10.1016/S0166-0462(03)00002-4.
Franzese, Robert J., and Jude C. Hays. 2007. “Spatial Econometric Models of Cross-Sectional Interdependence in Political Science Panel and Time-Series-Cross-Section Data.” Political Analysis 15 (2): 140–64. https://doi.org/10.1093/pan/mpm005.
Franzese, Robert J., Jude C. Hays, and Scott J. Cook. 2016. “Spatial- and Spatiotemporal-Autoregressive Probit Models of Interdependent Binary Outcomes.” Political Science Research and Methods 4 (01): 151–73. https://doi.org/10.1017/psrm.2015.14.
Gibbons, Steve, and Henry G. Overman. 2012. “Mostly Pointless Spatial Econometrics?” Journal of Regional Science 52 (2): 172–91. https://doi.org/10.1111/j.1467-9787.2012.00760.x.
Gollini, Isabella, Binbin Lu, Martin Charlton, Christopher Brunsdon, and Paul Harris. 2015. GWmodel : An R Package for Exploring Spatial Heterogeneity Using Geographically Weighted Models.” Journal of Statistical Software 63 (17). https://doi.org/10.18637/jss.v063.i17.
Gräler, Benedikt, Edzer Pebesma, and Gerard Heuvelink. 2016. “Spatio-Temporal Interpolation Using Gstat.” The R Journal 8 (1): 204–18.
Halleck Vega, Solmaria, and J. Paul Elhorst. 2015. “The SLX Model.” Journal of Regional Science 55 (3): 339–63. https://doi.org/10.1111/jors.12188.
Kelejian, Harry H., and Gianfranco Piras. 2017. Spatial Econometrics. Elsevier. https://doi.org/10.1016/C2016-0-04332-2.
Kelejian, Harry H., and Ingmar R. Prucha. 1998. “A Generalized Spatial Two-Stage Least Squares Procedure for Estimating a Spatial Autoregressive Model with Autoregressive Disturbances.” The Journal of Real Estate Finance and Economics 17 (1): 99–121. https://doi.org/10.1023/A:1007707430416.
———. 1999. “A Generalized Moments Estimator for the Autoregressive Parameter in a Spatial Model.” International Economic Review 40 (2): 509–33. https://doi.org/10.1111/1468-2354.00027.
———. 2010. “Specification and Estimation of Spatial Autoregressive Models with Autoregressive and Heteroskedastic Disturbances.” Journal of Econometrics 157 (1): 53–67. https://doi.org/10.1016/j.jeconom.2009.10.025.
Kelejian, Harry H., Ingmar R. Prucha, and Yevgeny Yuzefovich. 2004. “Instrumental Variable Estimation of a Spatial Autoregressive Model with Autoregressive Disturbances: Large and Small Sample Results.” In Spatial and Spatiotemporal Econometrics, edited by James P. LeSage and R. Kelley Pace, 163–98. Advances in Econometrics. Amsterdam and Boston: Elsevier.
Kley, Stefanie, and Tetiana Dovbishchuk. 2021. “How a Lack of Green in the Residential Environment Lowers the Life Satisfaction of City Dwellers and Increases Their Willingness to Relocate.” Sustainability 13 (7): 3984. https://doi.org/10.3390/su13073984.
Klier, Thomas, and Daniel P. McMillen. 2008. “Clustering of Auto Supplier Plants in the United States: Generalized Method of Moments Spatial Logit for Large Samples.” Journal of Business & Economic Statistics 26 (4): 460–71.
Lacombe, Donald J., and James P. LeSage. 2018. “Use and Interpretation of Spatial Autoregressive Probit Models.” The Annals of Regional Science 60 (1): 1–24. https://doi.org/10.1007/s00168-015-0705-x.
Lee, Barrett A., Sean F. Reardon, Glenn Firebaugh, Chad R. Farrell, Stephen A. Matthews, and David O’Sullivan. 2008. “Beyond the Census Tract: Patterns and Determinants of Racial Segregation at Multiple Geographic Scales.” American Sociological Review 73 (5): 766–91. https://doi.org/10.1177/000312240807300504.
Lee, Lung-fei. 2004. “Asymptotic Distributions of Quasi-Maximum Likelihood Estimators for Spatial Autoregressive Models.” Econometrica 72 (6): 1899–1925.
Lee, Lung-fei, and Jihai Yu. 2010. “Estimation of Spatial Autoregressive Panel Data Models with Fixed Effects.” Journal of Econometrics 154 (2): 165–85. https://doi.org/10.1016/j.jeconom.2009.08.001.
LeSage, James P. 2014a. “What Regional Scientists Need to Know about Spatial Econometrics.” The Review of Regional Studies 44 (1): 13–32. https://doi.org/https://dx.doi.org/10.2139/ssrn.2420725.
———. 2014b. “Spatial Econometric Panel Data Model Specification: A Bayesian Approach.” Spatial Statistics 9 (August): 122–45. https://doi.org/10.1016/j.spasta.2014.02.002.
LeSage, James P., and R. Kelley Pace. 2009. Introduction to Spatial Econometrics. Statistics, Textbooks and Monographs. Boca Raton: CRC Press.
———. 2014. “The Biggest Myth in Spatial Econometrics.” Econometrics 2 (4): 217–49. https://doi.org/10.3390/econometrics2040217.
Liebe, Ulf, Sander van Cranenburgh, and Caspar Chorus. 2023. “Maximizing Utility or Avoiding Losses? Uncovering Decision Rule-Heterogeneity in Sociological Research with an Application to Neighbourhood Choice.” Sociological Methods & Research, July, 00491241231186657. https://doi.org/10.1177/00491241231186657.
Lovelace, Robin, Jakub Nowosad, and Jannes Muenchow. 2019. Geocomputation with R. 1st ed. Chapman & Hall/CRC the R Series. Boca Raton: Chapman & Hall/CRC.
Manski, Charles F. 1993. “Identification of Endogenous Social Effects: The Reflection Problem.” The Review of Economic Studies 60 (3): 531–42. https://doi.org/10.2307/2298123.
McMillen, Daniel P. 1992. “Probit with Spatial Autocorrelation.” Journal of Regional Science 32 (3): 335–48. https://doi.org/10.1111/j.1467-9787.1992.tb00190.x.
Millo, Giovanni, and Gianfranco Piras. 2012. “Splm: Spatial Panel Data Models in R.” Journal of Statistical Software 47 (1). https://doi.org/10.18637/jss.v047.i01.
Mohai, Paul, and Robin Saha. 2007. “Racial Inequality in the Distribution of Hazardous Waste: A National-Level Reassessment.” Social Problems 54 (3): 343–70. https://doi.org/10.1525/sp.2007.54.3.343.
Moran, P. A. P. 1950. “Notes on Continuous Stochastic Phenomena.” Biometrika 37 (1/2): 17. https://doi.org/10.2307/2332142.
Mur, Jesús, and Ana Angulo. 2009. “Model Selection Strategies in a Spatial Setting: Some Additional Results.” Regional Science and Urban Economics 39 (2): 200–213. https://doi.org/10.1016/j.regsciurbeco.2008.05.018.
Neumayer, Eric, and Thomas Plümper. 2016. “W.” Political Science Research and Methods 4 (01): 175–93. https://doi.org/10.1017/psrm.2014.40.
Ord, John Keith. 1975. “Estimation Methods for Models of Spatial Interaction.” Journal of the American Statistical Association 70 (349): 120–26. https://doi.org/10.2307/2285387.
Pace, R. Kelley, and James P. LeSage. 2010. “Omitted Variable Biases of OLS and Spatial Lag Models.” In Progress in Spatial Analysis, edited by Antonio Páez, Julie Gallo, Ron N. Buliung, and Sandy Dall’erba, 17–28. Berlin and Heidelberg: Springer.
Pebesma, Edzer. 2018. “Simple Features for R: Standardized Support for Spatial Vector Data.” The R Journal 10 (1): 439. https://doi.org/10.32614/RJ-2018-009.
Pebesma, Edzer, and Roger Bivand. 2023. Spatial Data Science: With Applications in R. First. Boca Raton: Chapman and Hall/CRC. https://doi.org/10.1201/9780429459016.
Pinkse, Joris, and Margaret E. Slade. 2010. “The Future of Spatial Econometrics.” Journal of Regional Science 50 (1): 103–17. https://doi.org/10.1111/j.1467-9787.2009.00645.x.
Rüttenauer, Tobias. 2018. “Neighbours Matter: A Nation-wide Small-area Assessment of Environmental Inequality in Germany.” Social Science Research 70: 198–211. https://doi.org/10.1016/j.ssresearch.2017.11.009.
———. 2022. “Spatial Regression Models: A Systematic Comparison of Different Model Specifications Using Monte Carlo Experiments.” Sociological Methods & Research 51 (2): 728–59. https://doi.org/10.1177/0049124119882467.
———. 2024. “Spatial Data Analysis.” arXiv. https://arxiv.org/abs/2402.09895.
Rüttenauer, Tobias, and Henning Best. 2021. “Environmental Inequality and Residential Sorting in Germany: A Spatial Time-Series Analysis of the Demographic Consequences of Industrial Sites.” Demography 58 (6): 2243–63. https://doi.org/10.1215/00703370-9563077.
Sarrias, Mauricio. 2023. Intermediate Spatial Econometrics with Applications in R.
Tennekes, Martijn. 2018. “Tmap : Thematic Maps in R.” Journal of Statistical Software 84 (6). https://doi.org/10.18637/jss.v084.i06.
Tobler, Waldo R. 1970. “A Computer Movie Simulating Urban Growth in the Detroit Region.” Economic Geography 46: 234–40. https://doi.org/10.2307/143141.
Ward, Michael Don, and Kristian Skrede Gleditsch. 2008. Spatial Regression Models. Vol. 155. Quantitative Applications in the Social Sciences. Thousand Oaks: Sage.
Wimpy, Cameron, Guy D. Whitten, and Laron K. Williams. 2021. “X Marks the Spot: Unlocking the Treasure of Spatial-X Models.” The Journal of Politics 83 (2): 722–39. https://doi.org/10.1086/710089.
Wong, David. 2009. “The Modifiable Areal Unit Problem (MAUP).” In The Sage Handbook of Spatial Analysis, edited by A. Stewart Fotheringham and Peter Rogerson, 105–24. Los Angeles and London: Sage.
Wooldridge, Jeffrey M. 2010. Econometric Analysis of Cross Section and Panel Data. Cambridge, Mass.: MIT Press.