References
Anselin, Luc. 1988. Spatial Econometrics:
Methods and Models. Studies in
Operational Regional Science. Dordrecht:
Kluwer.
———. 1995. “Local Indicators of Spatial
Association-LISA.” Geographical Analysis 27 (2):
93–115. https://doi.org/10.1111/j.1538-4632.1995.tb00338.x.
———. 2003. “Spatial Externalities, Spatial
Multipliers, and Spatial Econometrics.”
International Regional Science Review 26 (2): 153–66. https://doi.org/10.1177/0160017602250972.
Anselin, Luc, and Anil K. Bera. 1998. “Spatial
Dependence in Linear Regression Models with an
Introduction to Spatial Econometrics.”
In Handbook of Applied Economic Statistics, edited
by Aman Ullah and David E. A. Giles, 237–89. New York:
Dekker.
Anselin, Luc, Anil K. Bera, Raymond Florax, and Mann J. Yoon. 1996.
“Simple Diagnostic Tests for Spatial
Dependence.” Regional Science and Urban Economics
26 (1): 77–104. https://doi.org/10.1016/0166-0462(95)02111-6.
Anselin, Luc, and Nancy Lozano-Gracia. 2008. “Errors in
Variables and Spatial Effects in Hedonic
House Price Models of Ambient Air Quality.”
Empirical Economics 34 (1): 5–34. https://doi.org/10.1007/s00181-007-0152-3.
Anselin, Luc, Renan Serenini, and Pedro Amaral. 2024. “Spatial
Econometric Model Specification Search: Another
Look.” https://doi.org/10.13140/RG.2.2.10650.86721.
Appelhans, Tim, Florian Detsch, Chritoph Reudenbach, and Stefan
Woellauer. 2021. “Mapview: Interactive Viewing of
Spatial Data in R.”
Beron, Kurt J., and Wim P. M. Vijverberg. 2004. “Probit in a
Spatial Context: A Monte Carlo
Analysis.” In Advances in Spatial
Econometrics: Methodology, Tools and
Applications, edited by Luc Anselin, Florax, Raymond
J. G. M, and Sergio J. Rey, 169–95. Berlin, Heidelberg:
Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-05617-2‗
8.
Betz, Timm, Scott J. Cook, and Florian M. Hollenbach. 2020.
“Spatial Interdependence and Instrumental Variable Models.”
Political Science Research and Methods 8 (4): 646–61. https://doi.org/10.1017/psrm.2018.61.
Bivand, Roger S., and Colin Rudel. 2018. “Rgeos:
Interface to Geometry Engine - Open
Source (’GEOS’).”
Bivand, Roger, Giovanni Millo, and Gianfranco Piras. 2021. “A
Review of Software for Spatial
Econometrics in R.” Mathematics 9
(11): 1276. https://doi.org/10.3390/math9111276.
Bivand, Roger, and Gianfranco Piras. 2015. “Comparing
Implementations of Estimation Methods for
Spatial Econometrics.” Journal of Statistical
Software 63 (18): 1–36. https://doi.org/10.18637/jss.v063.i18.
Bivand, Roger, and David W. S. Wong. 2018. “Comparing
Implementations of Global and Local Indicators of Spatial
Association.” TEST 27 (3): 716–48. https://doi.org/10.1007/s11749-018-0599-x.
Boillat, Sébastien, M. Graziano Ceddia, and Patrick Bottazzi. 2022.
“The Role of Protected Areas and Land Tenure Regimes on Forest
Loss in Bolivia: Accounting for Spatial
Spillovers.” Global Environmental Change 76 (September):
102571. https://doi.org/10.1016/j.gloenvcha.2022.102571.
Brunsdon, Chris, A. Stewart Fotheringham, and Martin E. Charlton. 1996.
“Geographically Weighted Regression: A
Method for Exploring Spatial
Nonstationarity.” Geographical Analysis 28 (4):
281–98. https://doi.org/10.1111/j.1538-4632.1996.tb00936.x.
Burridge, Peter, J. Paul Elhorst, and Katarina Zigova. 2016.
“Group Interaction in Research and the
Use of General Nesting Spatial Models.”
In Spatial Econometrics: Qualitative and
Limited Dependent Variables, edited by Badi H.
Baltagi, James P. LeSage, and R. Kelley Pace, 37:223–58. Advances in
Econometrics. Emerald Group Publishing
Limited. https://doi.org/10.1108/S0731-905320160000037016.
Cliff, Andrew, and Keith Ord. 1972. “Testing for Spatial
Autocorrelation Among Regression Residuals.”
Geographical Analysis 4 (3): 267–84. https://doi.org/10.1111/j.1538-4632.1972.tb00475.x.
Cook, Scott J., Jude C. Hays, and Robert J. Franzese. 2020. “Model
Specification and Spatial
Interdependence.” In The Sage Handbook of
Research Methods in Political Science and International Relations,
edited by Luigi Curini and Robert Franzese, 1st ed, 730–47.
Thousand Oaks: SAGE Inc.
Croissant, Yves, and Givanni Millo, eds. 2018. “Spatial
Panels.” In Panel Data Econometrics
with R, 245–84. Chichester, UK:
John Wiley & Sons, Ltd. https://doi.org/10.1002/9781119504641.ch10.
Drukker, David M., Peter Egger, and Ingmar R. Prucha. 2013. “On
Two-Step Estimation of a Spatial Autoregressive
Model with Autoregressive Disturbances and
Endogenous Regressors.” Econometric Reviews
32 (5-6): 686–733. https://doi.org/10.1080/07474938.2013.741020.
Elhorst, J. Paul. 2012. “Dynamic Spatial Panels: Models, Methods,
and Inferences.” Journal of Geographical Systems 14 (1):
5–28. https://doi.org/10.1007/s10109-011-0158-4.
———. 2014. Spatial Econometrics: From
Cross-Sectional Data to Spatial Panels.
SpringerBriefs in Regional Science.
Berlin and Heidelberg: Springer. https://doi.org/10.1007/978-3-642-40340-8.
Elhorst, J. Paul, and S. Halleck Vega. 2017. “The SLX
Model: Extensions and the Sensitivity
of Spatial Spillovers to W.”
Papeles de Economía Española 152: 34–50.
Elhorst, J. Paul, Pim Heijnen, Anna Samarina, and Jan P. A. M. Jacobs.
2017. “Transitions at Different Moments in
Time: A Spatial Probit Approach.”
Journal of Applied Econometrics 32 (2): 422–39. https://doi.org/10.1002/jae.2505.
Fingleton, Bernard, Daniel Olner, and Gwilym Pryce. 2020.
“Estimating the Local Employment Impacts of Immigration:
A Dynamic Spatial Panel Model.” Urban
Studies 57 (13): 2646–62. https://doi.org/10.1177/0042098019887916.
Fischer, Manfred M., Monika Bartkowska, Aleksandra Riedl, Sascha
Sardadvar, and Andrea Kunnert. 2009. “The Impact of Human Capital
on Regional Labor Productivity in Europe.”
Letters in Spatial and Resource Sciences 2 (2-3): 97–108. https://doi.org/10.1007/s12076-009-0027-7.
Florax, Raymond, Hendrik Folmer, and Sergio J. Rey. 2003.
“Specification Searches in Spatial
Econometrics: The Relevance of Hendry’s
Methodology.” Regional Science and Urban
Economics 33 (5): 557–79. https://doi.org/10.1016/S0166-0462(03)00002-4.
Franzese, Robert J., and Jude C. Hays. 2007. “Spatial
Econometric Models of Cross-Sectional
Interdependence in Political Science Panel and
Time-Series-Cross-Section Data.” Political
Analysis 15 (2): 140–64. https://doi.org/10.1093/pan/mpm005.
Franzese, Robert J., Jude C. Hays, and Scott J. Cook. 2016.
“Spatial- and Spatiotemporal-Autoregressive Probit
Models of Interdependent Binary Outcomes.”
Political Science Research and Methods 4 (01): 151–73. https://doi.org/10.1017/psrm.2015.14.
Gibbons, Steve, and Henry G. Overman. 2012. “Mostly
Pointless Spatial Econometrics?” Journal of
Regional Science 52 (2): 172–91. https://doi.org/10.1111/j.1467-9787.2012.00760.x.
Gollini, Isabella, Binbin Lu, Martin Charlton, Christopher Brunsdon, and
Paul Harris. 2015. “GWmodel : An R
Package for Exploring Spatial Heterogeneity Using
Geographically Weighted Models.” Journal of
Statistical Software 63 (17). https://doi.org/10.18637/jss.v063.i17.
Gräler, Benedikt, Edzer Pebesma, and Gerard Heuvelink. 2016.
“Spatio-Temporal Interpolation Using Gstat.”
The R Journal 8 (1): 204–18.
Halleck Vega, Solmaria, and J. Paul Elhorst. 2015. “The SLX
Model.” Journal of Regional Science 55 (3):
339–63. https://doi.org/10.1111/jors.12188.
Kelejian, Harry H., and Gianfranco Piras. 2017. Spatial
Econometrics. Elsevier. https://doi.org/10.1016/C2016-0-04332-2.
Kelejian, Harry H., and Ingmar R. Prucha. 1998. “A
Generalized Spatial Two-Stage Least Squares Procedure for
Estimating a Spatial Autoregressive Model with
Autoregressive Disturbances.” The Journal of
Real Estate Finance and Economics 17 (1): 99–121. https://doi.org/10.1023/A:1007707430416.
———. 1999. “A Generalized Moments Estimator for the
Autoregressive Parameter in a Spatial
Model.” International Economic Review 40 (2):
509–33. https://doi.org/10.1111/1468-2354.00027.
———. 2010. “Specification and Estimation of
Spatial Autoregressive Models with
Autoregressive and Heteroskedastic
Disturbances.” Journal of Econometrics 157 (1):
53–67. https://doi.org/10.1016/j.jeconom.2009.10.025.
Kelejian, Harry H., Ingmar R. Prucha, and Yevgeny Yuzefovich. 2004.
“Instrumental Variable Estimation of a Spatial
Autoregressive Model with Autoregressive
Disturbances: Large and Small Sample
Results.” In Spatial and Spatiotemporal
Econometrics, edited by James P. LeSage and R. Kelley Pace,
163–98. Advances in Econometrics. Amsterdam and
Boston: Elsevier.
Kley, Stefanie, and Tetiana Dovbishchuk. 2021. “How a
Lack of Green in the Residential
Environment Lowers the Life Satisfaction of
City Dwellers and Increases Their Willingness
to Relocate.” Sustainability 13 (7): 3984.
https://doi.org/10.3390/su13073984.
Klier, Thomas, and Daniel P. McMillen. 2008. “Clustering of
Auto Supplier Plants in the United States:
Generalized Method of Moments Spatial Logit
for Large Samples.” Journal of Business &
Economic Statistics 26 (4): 460–71.
Lacombe, Donald J., and James P. LeSage. 2018. “Use and
Interpretation of Spatial Autoregressive Probit Models.” The
Annals of Regional Science 60 (1): 1–24. https://doi.org/10.1007/s00168-015-0705-x.
Lee, Barrett A., Sean F. Reardon, Glenn Firebaugh, Chad R. Farrell,
Stephen A. Matthews, and David O’Sullivan. 2008. “Beyond the
Census Tract: Patterns and
Determinants of Racial Segregation at
Multiple Geographic Scales.” American
Sociological Review 73 (5): 766–91. https://doi.org/10.1177/000312240807300504.
Lee, Lung-fei. 2004. “Asymptotic Distributions of
Quasi-Maximum Likelihood Estimators for Spatial
Autoregressive Models.” Econometrica 72 (6):
1899–1925.
Lee, Lung-fei, and Jihai Yu. 2010. “Estimation of Spatial
Autoregressive Panel Data Models with Fixed
Effects.” Journal of Econometrics 154 (2):
165–85. https://doi.org/10.1016/j.jeconom.2009.08.001.
LeSage, James P. 2014a. “What Regional Scientists
Need to Know about Spatial
Econometrics.” The Review of Regional Studies 44
(1): 13–32. https://doi.org/https://dx.doi.org/10.2139/ssrn.2420725.
———. 2014b. “Spatial Econometric Panel Data Model Specification:
A Bayesian Approach.” Spatial Statistics 9
(August): 122–45. https://doi.org/10.1016/j.spasta.2014.02.002.
LeSage, James P., and R. Kelley Pace. 2009. Introduction to
Spatial Econometrics. Statistics,
Textbooks and Monographs. Boca
Raton: CRC Press.
———. 2014. “The Biggest Myth in Spatial
Econometrics.” Econometrics 2 (4): 217–49. https://doi.org/10.3390/econometrics2040217.
Liebe, Ulf, Sander van Cranenburgh, and Caspar Chorus. 2023.
“Maximizing Utility or Avoiding Losses?
Uncovering Decision Rule-Heterogeneity in
Sociological Research with an Application to
Neighbourhood Choice.” Sociological Methods
& Research, July, 00491241231186657. https://doi.org/10.1177/00491241231186657.
Lovelace, Robin, Jakub Nowosad, and Jannes Muenchow. 2019.
Geocomputation with R. 1st ed. Chapman &
Hall/CRC the R Series. Boca
Raton: Chapman & Hall/CRC.
Manski, Charles F. 1993. “Identification of Endogenous Social
Effects: The Reflection Problem.” The Review of
Economic Studies 60 (3): 531–42. https://doi.org/10.2307/2298123.
McMillen, Daniel P. 1992. “Probit with Spatial
Autocorrelation.” Journal of Regional Science 32
(3): 335–48. https://doi.org/10.1111/j.1467-9787.1992.tb00190.x.
Millo, Giovanni, and Gianfranco Piras. 2012. “Splm: Spatial
Panel Data Models in R.” Journal of
Statistical Software 47 (1). https://doi.org/10.18637/jss.v047.i01.
Mohai, Paul, and Robin Saha. 2007. “Racial Inequality
in the Distribution of Hazardous Waste:
A National-Level Reassessment.” Social
Problems 54 (3): 343–70. https://doi.org/10.1525/sp.2007.54.3.343.
Moran, P. A. P. 1950. “Notes on Continuous Stochastic
Phenomena.” Biometrika 37 (1/2): 17. https://doi.org/10.2307/2332142.
Mur, Jesús, and Ana Angulo. 2009. “Model Selection
Strategies in a Spatial Setting: Some
Additional Results.” Regional Science and Urban
Economics 39 (2): 200–213. https://doi.org/10.1016/j.regsciurbeco.2008.05.018.
Neumayer, Eric, and Thomas Plümper. 2016. “W.”
Political Science Research and Methods 4 (01): 175–93. https://doi.org/10.1017/psrm.2014.40.
Ord, John Keith. 1975. “Estimation Methods for
Models of Spatial Interaction.”
Journal of the American Statistical Association 70 (349):
120–26. https://doi.org/10.2307/2285387.
Pace, R. Kelley, and James P. LeSage. 2010. “Omitted
Variable Biases of OLS and Spatial Lag
Models.” In Progress in Spatial
Analysis, edited by Antonio Páez, Julie Gallo, Ron N.
Buliung, and Sandy Dall’erba, 17–28. Berlin and Heidelberg:
Springer.
Pebesma, Edzer. 2018. “Simple Features for R:
Standardized Support for Spatial Vector Data.”
The R Journal 10 (1): 439. https://doi.org/10.32614/RJ-2018-009.
Pebesma, Edzer, and Roger Bivand. 2023. Spatial Data
Science: With Applications in R.
First. Boca Raton: Chapman and Hall/CRC. https://doi.org/10.1201/9780429459016.
Pinkse, Joris, and Margaret E. Slade. 2010. “The
Future of Spatial Econometrics.”
Journal of Regional Science 50 (1): 103–17. https://doi.org/10.1111/j.1467-9787.2009.00645.x.
Rüttenauer, Tobias. 2018. “Neighbours Matter: A Nation-wide Small-area Assessment of
Environmental Inequality in Germany.”
Social Science Research 70: 198–211. https://doi.org/10.1016/j.ssresearch.2017.11.009.
———. 2022. “Spatial Regression Models: A
Systematic Comparison of Different Model Specifications
Using Monte Carlo Experiments.” Sociological Methods
& Research 51 (2): 728–59. https://doi.org/10.1177/0049124119882467.
Rüttenauer, Tobias, and Henning Best. 2021. “Environmental
Inequality and Residential Sorting in
Germany: A Spatial Time-Series Analysis of the
Demographic Consequences of Industrial
Sites.” Demography 58 (6): 2243–63. https://doi.org/10.1215/00703370-9563077.
Sarrias, Mauricio. 2023. Intermediate Spatial
Econometrics with Applications in
R.
Tennekes, Martijn. 2018. “Tmap : Thematic Maps in
R.” Journal of Statistical Software 84 (6).
https://doi.org/10.18637/jss.v084.i06.
Tobler, Waldo R. 1970. “A Computer Movie Simulating Urban
Growth in the Detroit Region.” Economic
Geography 46: 234–40. https://doi.org/10.2307/143141.
Ward, Michael Don, and Kristian Skrede Gleditsch. 2008. Spatial
Regression Models. Vol. 155. Quantitative
Applications in the Social Sciences.
Thousand Oaks: Sage.
Wimpy, Cameron, Guy D. Whitten, and Laron K. Williams. 2021. “X
Marks the Spot: Unlocking the
Treasure of Spatial-X Models.” The
Journal of Politics 83 (2): 722–39. https://doi.org/10.1086/710089.
Wong, David. 2009. “The Modifiable Areal Unit Problem
(MAUP).” In The Sage Handbook of
Spatial Analysis, edited by A. Stewart Fotheringham
and Peter Rogerson, 105–24. Los Angeles and London:
Sage.
Wooldridge, Jeffrey M. 2010. Econometric Analysis of
Cross Section and Panel Data.
Cambridge, Mass.: MIT Press.