Applied Fixed Effects Panel Regression using R and Stata

Volker Ludwig¹ Tobias Rüttenauer²

¹TU Kaiserslautern, [ludwig@sowi.uni-kl.de,](mailto:ludwig@sowi.uni-kl.de) [@LudwigVolker1](https://twitter.com/LudwigVolker1)

²University of Oxford, [tobias.ruttenauer@nuffield.ox.ac.uk,](mailto:tobias.ruttenauer@nuffield.ox.ac.uk) [@ruettenauer](https://twitter.com/ruettenauer)

March 4, 2021

This course profited a lot from teaching materials by Josef Brüderl and Volker Ludwig [https://www.ls3.soziologie.uni-muenchen.de/studium-lehre/archiv/teaching-marterials/panel-analysis](https://www.ls3.soziologie.uni-muenchen.de/studium-lehre/archiv/teaching-marterials/panel-analysis_april-2019.pdf) april-[2019.pdf](https://www.ls3.soziologie.uni-muenchen.de/studium-lehre/archiv/teaching-marterials/panel-analysis_april-2019.pdf)

Part I

[Conventional Panel Models](#page-1-0)

[Intro](#page-2-0) [Panel Data](#page-3-0) [FE estimator](#page-8-0) [RE estimator](#page-15-0) [Tests](#page-19-0) [Practical Guide](#page-21-0) 2 / 50

Session I

Aim

- \blacktriangleright Intuitive understanding of panel estimators
- \blacktriangleright Differences between estimators
- \blacktriangleright How to decide in practice

Outline

- \blacktriangleright FE analysis with panel data
- \blacktriangleright RE, FE, Hybrid / Mundlak framework
- \blacktriangleright Hausman specification test
- \triangleright Some practical guidance

Cross-sectional data

▶ Conventional Pooled OLS \blacktriangleright Positive correlation between age - happiness $y_{it} = \alpha + \beta_1 x_{it} + v_{it}$

- \blacktriangleright Estimator based on complete variance over all observations
- \blacktriangleright This does not account for any type of clustering, and every observation is treated as an independent case
- \blacktriangleright Regression minimizes distance to all points

[Intro](#page-2-0) **[Panel Data](#page-3-0)** [FE estimator](#page-8-0) [RE estimator](#page-15-0) [Tests](#page-19-0) [Practical Guide](#page-21-0) **4** / 50

Cross-sectional data

- ▶ Conventional Pooled OLS
- \blacktriangleright Controlling for cohort
- \triangleright Correlation positive, but weaker

$$
y_{it} = \alpha + \beta_1 x_{it} + \beta_2 z_{it} + v_{it}
$$

- \blacktriangleright Estimator based on variance within each cohort
- \triangleright Regression minimizes distance to points of the same cohort, and discards between-cohort variance
- \blacktriangleright But still cross-sectional

Advantage of panel data

- \blacktriangleright Within estimator
- Person-fixed OLS
- \triangleright Controlling for individual person
- \blacktriangleright Correlation negative

$$
y_{it} = \beta_1 x_{it} + \alpha_i + \epsilon_{it}
$$

- \blacktriangleright Estimator based on within-person variance only
- \blacktriangleright Regression minimizes distance to points of the same individual
- \blacktriangleright This is solely based on changes over time, and discards between-person variance

We can also turn this around

- I Between estimator
- \triangleright BE = POLS FE
- \blacktriangleright Using only person-averages
- \triangleright Correlation close to POLS

$$
\bar{y}_i = \alpha + \beta_1 \bar{x}_i + \bar{v}_i
$$

- \blacktriangleright Estimator based on **between**-person variance only
- \triangleright Regression minimizes distance to points of individual averages
- \triangleright This is solely based on differences between individuals, and discards within-person variance

Advantage of panel data

More information

- \triangleright Observed trajectories over life-course
- ▶ Observed order of events
- \blacktriangleright Between and within variance

Better identification strategies

- \triangleright Correlation of changes rather than states
- \triangleright Counterfactual based on same individual
- \blacktriangleright Relaxes some strong assumptions
- \blacktriangleright Closer to a causal effect

Pooled OLS (POLS) estimator

$$
y_{it} = \alpha + \beta x_{it} + v_{it} \tag{1}
$$

Main assumption for consistency

 \blacktriangleright E($v_{it}|x_{it}) = 0$, Cov(x_{it}, v_{it}) = 0 Error (including omitted variables) must not be correlated with x_{it}

Problems

- \triangleright in observational studies: rarely all confounders observed
- \blacktriangleright x_{it} is likely endogenous, thus $\hat{\beta}_x$ biased

[Intro](#page-2-0) [Panel Data](#page-3-0) **[FE estimator](#page-8-0)** [RE estimator](#page-15-0) [Tests](#page-19-0) [Practical Guide](#page-21-0) 9 / 50

Fixed Effects (FE) estimator

$$
y_{it} = \beta x_{it} + \alpha_i + \epsilon_{it} \tag{2}
$$

$$
FE = POLS - BE \tag{3}
$$

$$
(y_{it}-\bar{y}_i)=\beta(x_{it}-\bar{x}_i)+(\epsilon_{it}-\bar{\epsilon}_i)
$$
\n(4)

Two error components
$$
v_{it} = \alpha_i + \epsilon_{it}
$$

Main assumption for consistency

►
$$
E(\epsilon_{it}|x_i, \alpha_i) = 0
$$

ldiosyncratic time-variation in ϵ_i must be uncorrelated with variation in x_i across all time periods

- but $E(\alpha_i|x_i)$ can be any function of x_i Time-constant level-differences are allowed to correlate with x_i
- \triangleright we still get an unbiased estimate of $\beta_{\mathbf{x}}$

Fixed Effects (FE) estimator

- \blacktriangleright Similar for binary and continuous data
- \blacktriangleright All time-constant information is discarded
- \blacktriangleright including potential confounders
- ▶ OLS on demeaned data
- Deviations from person-mean
- \triangleright Do deviations within the same person correlate?

Fixed Effects (FE) estimator

$$
y_{it} = \beta x_{it} + \alpha_i + \epsilon_{it} \tag{2}
$$

$$
FE = POLS - BE \tag{3}
$$

$$
(y_{it} - \bar{y}_i) = \beta(x_{it} - \bar{x}_i) + (\epsilon_{it} - \bar{\epsilon}_i)
$$
 (4)

Potential problems

- Inefficient: cannot estimate effect of time-constant x
- \triangleright One-way FE ignores units without variation in x
- \blacktriangleright Uncontrolled time-varying confounders still bias $\hat{\beta}_{\textit{FE}}$ e.g. economic recession over the 4 waves

[Intro](#page-2-0) [Panel Data](#page-3-0) **[FE estimator](#page-8-0)** [RE estimator](#page-15-0) [Tests](#page-19-0) [Practical Guide](#page-21-0) 12 / 50

Two-ways FE

$$
y_{it} = \beta x_{it} + \alpha_i + \zeta_t + \epsilon_{it}
$$

\n
$$
y_{it} - \bar{y}_i - \bar{y}_t + \bar{y} = \beta(x_{it} - \bar{x}_i - \bar{x}_t + \bar{x}) + (\epsilon_{it} - \bar{\epsilon}_i - \bar{\epsilon}_t + \bar{\epsilon})
$$
 (6)

where ζ_t are time fixed effects (analogous to α_i)

Advantage over oneway FE

- \blacktriangleright Removes common time shocks independent of treatment
- \blacktriangleright Takes back in individuals without variation in x
- \blacktriangleright Adds a 'control-group' to the estimation

Main assumption

▶ Parallel trends between 'treatment' and 'control' units

Marriage wage premium

One-way FE

- \blacktriangleright Discards never-treated
- \blacktriangleright Adds time-shocks to treatment effect
- \blacktriangleright Biased marriage effect

Two-ways FE

- \blacktriangleright Uses never-married as 'control group'
- \blacktriangleright True marriage effect

Marriage wage premium

- \blacktriangleright Same premium as before (500 EUR)
- \blacktriangleright But steeper trajectory for ever married
- \blacktriangleright Parallel trends assumption violated

- \triangleright Both one-way and two-ways FE are biased
- \triangleright One-way FE adds time shocks $+$ trend
- \blacktriangleright Two-ways FE adds trend
- \Rightarrow Solution: Fixed Effects Individual Slopes

Random Effects (RE) estimator

$$
(y_{it} - \lambda \bar{y}_i) = \beta (x_{it} - \lambda \bar{x}_i) + (\epsilon_{it} - \lambda \bar{\epsilon}_i)
$$
 (7)

where $\hat{\lambda}=1-\sqrt{\frac{\sigma_\epsilon^2}{\sigma_\epsilon^2+T\sigma_\alpha^2}}$, with σ_ϵ^2 denoting the residual variance, and σ_{α}^2 denoting the variance of the individual effects $\alpha_i.$

- \blacktriangleright RE is estimator on the 'quasi-demeaned' data
- \triangleright Weighted average of between and within estimator
- \blacktriangleright Weights determined by residual variance in FE as share of total residual variance

\n- T large,
$$
\sigma_{\alpha}^2
$$
 large \rightarrow FE
\n- σ_{α}^2 small \rightarrow POLS
\n

[Intro](#page-2-0) [Panel Data](#page-3-0) [FE estimator](#page-8-0) [RE estimator](#page-15-0) [Tests](#page-19-0) [Practical Guide](#page-21-0) 16 / 50

BE-POLS-RE-FE

$$
\beta_{POLS} = \omega_{OLS}\beta_{FE} + (1 - \omega_{OLS})\beta_{BE}
$$
\nwhere $\omega_{OLS} = \sigma_{\tilde{x}}^2/\sigma_x^2$, with $\tilde{x} = x - \bar{x}_i$
\n
$$
\beta_{RE} = \omega_{GLS}\beta_{FE} + (1 - \omega_{GLS})\beta_{BE}
$$
\nwhere $\omega_{GLS} = \frac{\sigma_{\tilde{x}}^2}{\sigma_{\tilde{x}}^2 + \phi^2(\sigma_x^2 - \sigma_{\tilde{x}}^2)}$, and $\phi = \sqrt{\frac{\hat{\sigma}_{FE}^2}{\hat{\sigma}_{BE}^2}}$
\nHere $\omega_{OLS} = 0.026$
\n $\hat{\beta}_{POLS}$ close to $\hat{\beta}_{BE}$
\n $\omega_{GLS} = 0.509$
\n $\hat{\beta}_{RE}$ in the middle of $\hat{\beta}_{BE}$
\nand $\hat{\beta}_{FE}$
\n \Rightarrow most efficient

ل د Ξ POLS
BE
FE
RE 20 30 40 50 60 70 age

Random Effects (RE) estimator

Main assumption for consistency

- \blacktriangleright $E(\epsilon_{it}|x_i,\alpha_i) = 0$ (FE assumption) and
- \blacktriangleright E($\alpha_i|x_i) = 0$ (RE assumption)

In addition to FE assumption, the individual-specific fixed effects must not be correlated with x_i

Correlated level differences in y and x bias $\hat{\beta}_{\mathsf{RE}}$

- \blacktriangleright RE is most efficient estimator
- \blacktriangleright important for prediction tasks
- \blacktriangleright but relies on strong assumption
- \triangleright $\hat{\beta}$ likely biased in practice

Mundlak / Correlated Random Effects (CRE)

We can also estimate the within effect in RE framework

$$
y_{it} = \alpha + \beta x_{it} + \gamma \bar{x}_i + \xi_{it}
$$
 (8)

- ightharpoonup we split up the individual effect $\alpha_i = \gamma \bar{x}_i + \eta_i$
- \triangleright and thus only control partially for time-constant heterogeneity by adding the person-specific means \bar{x}_i
- \triangleright $\hat{\beta}$ thus gives us the within estimate for x
- **If** and for consistency of $\hat{\beta}_x$ we only need $E(\epsilon_{it}|x_i, \bar{x}_i) = 0$: equals the FE assumption for variables additionally included as person-specific means

ighthrow usually, include mean for all time-varying x (except t) [\(Chamberlain, 1982;](#page-49-0) [Mundlak, 1978\)](#page-49-1)

Hausman test

$$
H = (\hat{\beta}_1 - \hat{\beta}_0)^{\mathrm{T}} (N^{-1} V_{\hat{\beta}_1 - \hat{\beta}_0})^{-1} (\hat{\beta}_1 - \hat{\beta}_0), \tag{9}
$$

where $\hat{\beta}_1$ is consistent, and $\hat{\beta}_0$ is efficient. N^{-1} $V_{\hat{\beta}_1-\hat{\beta}_0} = \text{Var}(\hat{\beta}_1-\hat{\beta}_0)$ with RE being fully efficient: $\text{Var}(\hat{\beta}_1-\hat{\beta}_0)=\text{Var}(\hat{\beta}_1)-\text{Var}(\hat{\beta}_0)$ [\(Hausman, 1978\)](#page-49-2)

$$
\triangleright \hat{\beta}_1
$$
 is consistent, and $\hat{\beta}_0$ efficient

$$
\blacktriangleright \; H_0 \colon \, \hat{\beta}_{\textit{FE}} = \hat{\beta}_{\textit{RE}}
$$

- \blacktriangleright The test shows us if the two estimates differ significantly
- \Rightarrow Use FE if Hausman test significant, and H₀ rejected Obviously, not helpful if both estimates are biased

Artificial Regression Test

We can also use the CRE to perform a Hausman test

$$
y_{it} = \alpha + \beta x_{it} + \gamma \bar{x}_i + \xi_i, \qquad (10)
$$

\blacktriangleright Estimated via RE

- **IF RE estimator consistent if H₀:** $\gamma = 0$,
- in this case, $\gamma \bar{x}_i$ can be omitted, reducing [\(10\)](#page-20-0) to RE
- \triangleright With more than one covariate, we can just perform a joint Wald χ^2 test on all or a subset of $\hat{\gamma}$
- \Rightarrow Identical to conventional HT, but allows for a variety of different (robust) standard errors

[Intro](#page-2-0) [Panel Data](#page-3-0) [FE estimator](#page-8-0) [RE estimator](#page-15-0) [Tests](#page-19-0) [Practical Guide](#page-21-0) 21 / 50

Some practical guidance

Research question

- \blacktriangleright Let theory decide
- \blacktriangleright Between or within question?
- \blacktriangleright Descriptive or causal relation?
- 'Older people are happier'
	- \blacktriangleright Descriptive statement
	- \triangleright Between comparison \Rightarrow BE
- 'Getting older makes happier'
	- \blacktriangleright Causal statement
	- \triangleright Within comparison \Rightarrow FE
	- \triangleright Why would one use between variance for this statement?

Some practical guidance

Caution with RE and POLS

- \blacktriangleright Both mix within and between variance
- \triangleright Both rely on strong assumptions
- \blacktriangleright Very likely to be biased in practice
- \blacktriangleright Substantive interpretation of results?

One should always

- \triangleright check how close the coefficients are to BE and FE
- \blacktriangleright test for consistency (Hausman test)

Some practical guidance

FE estimator

- \triangleright Only within variance
- \blacktriangleright Weaker assumptions
- \triangleright Correlation based on changes in x and y
- \blacktriangleright Closer to a causal effect
- Usually, one should
	- \blacktriangleright use two-ways FE estimators
	- \triangleright check the amount of within variance in the data
	- \blacktriangleright test the parallel trends assumption
	- \triangleright Consider time-varying confounders

Further readings

Extensive slides by Josef Brüderl and Volker Ludwig [https://www.ls3.soziologie.uni-muenchen.de/](https://www.ls3.soziologie.uni-muenchen.de/studium-lehre/archiv/teaching-marterials/panel-analysis_april-2019.pdf) [studium-lehre/archiv/teaching-marterials/](https://www.ls3.soziologie.uni-muenchen.de/studium-lehre/archiv/teaching-marterials/panel-analysis_april-2019.pdf) [panel-analysis_april-2019.pdf](https://www.ls3.soziologie.uni-muenchen.de/studium-lehre/archiv/teaching-marterials/panel-analysis_april-2019.pdf) See also Brüderl and Ludwig (2015)

Books

- \blacktriangleright Intuitive: [Allison \(2009\)](#page-49-4)
- \triangleright Comprehensive and formal: [Wooldridge \(2010\)](#page-49-5)
- ▶ For R users: [Croissant and Millo \(2019\)](#page-49-6)
- General introduction (e.g. for teaching): [Angrist and Pischke \(2015\)](#page-49-7); [Firebaugh \(2008\)](#page-49-8)

[Intro](#page-2-0) [Panel Data](#page-3-0) [FE estimator](#page-8-0) [RE estimator](#page-15-0) [Tests](#page-19-0) [Practical Guide](#page-21-0) 25 / 50

Part II

[Fixed Effects Individual Slopes](#page-25-0)

[Intro](#page-26-0) [FE Bias](#page-27-0) [FEIS Estimation](#page-34-0) [FEIS vs. FE](#page-37-0) [Software](#page-39-0) [Simulation](#page-40-0) [Final remarks](#page-44-0) [Examples](#page-47-0) 26 / 50

Session II

Aim

- \triangleright Extend standard FE methods to cover situations with heterogeneous slopes [\(Wooldridge, 2010\)](#page-49-5)
- \triangleright Detect bias due to heterogeneous slopes and eliminate the bias

Outline

- \blacktriangleright FE bias due to heterogeneous slopes
- \blacktriangleright Estimation of FEIS estimator
- \triangleright Specification test for FEIS vs. FE
- \blacktriangleright Implementation
	- ▶ Stata: xtfeis (Ludwig 2015)
	- ▶ R: feisr (Rüttenauer and Ludwig, 2020)
- \blacktriangleright Monte Carlo results

The problem with heterogeneous slopes

lace Leading case: effect of some event (binary treatment) x_{it} on continuous outcome y_{it} , controlling for time z_{it}

$$
y_{it} = \beta x_{it} + \alpha_{1i} + \alpha_{2i} z_{it} + \epsilon_{it}.
$$
 (11)

DGP:
$$
y_{it} = 1 + \beta \cdot x_{it} + 0.5 \cdot t + 1 \cdot \text{treat}_i
$$

The problem with heterogeneous slopes

lace Leading case: effect of some event (binary treatment) x_{it} on continuous outcome y_{it} , controlling for time z_{it}

$$
y_{it} = \beta x_{it} + \alpha_{1i} + \alpha_{2i} z_{it} + \epsilon_{it}.
$$
 (12)

DGP:
$$
y_{it} = 1 + \beta \cdot x_{it} + 0.25 \cdot t + 1 \cdot \text{treat}_i + 0.25 \cdot \text{treat}_i \cdot t
$$

Estimation of standard FE

\triangleright 3 ways to control for α_{1i}

- ▶ Least Squares Dummy Variable (LSDV): include N person dummies
- **Example 3** estimate by Pooled OLS

$$
y_{it} = \beta x_{it} + \sum_{i=1}^{N} \alpha_{1i} d_i + \alpha_2 z_{it} + \xi_{it}
$$
 (13)

Estimation of standard FE

\triangleright 3 ways to control for α_{1i}

 \blacktriangleright Time-demeaning (FE): subtract person-specific average for each variable

Example 3 estimate by Pooled OLS

$$
\ddot{y}_{it} = \beta \ddot{x}_{it} + \alpha_2 \ddot{z}_{it} + \ddot{\xi}_{it}, \qquad (14)
$$

where, for some variable w , $\ddot{w}_{it} = w_{it} - \bar{w}_{i}$.

Estimation of standard FE

\triangleright 3 ways to control for α_{1i}

- ▶ Correlated Random Effects (CRE): include person-specific average for each indep var in the equation
- \triangleright estimate by Generalized Least Squares (GLS)

$$
y_{it} = \beta x_{it} + \gamma \bar{x}_i + \alpha_2 z_{it} + \delta \bar{z}_i + \xi_{it}
$$
 (15)

- \triangleright CRE suggests a simple test for RE heterogeneity bias
	- \blacktriangleright Artificial Regression Test for FE vs. RE

Bias of standard FE

- \triangleright Condition for consistency of FE is strict exogeneity of the idiosyncratic error term
- \blacktriangleright Violated if we estimate

$$
\ddot{y}_{it} = \beta \ddot{x}_{it} + \alpha_2 \ddot{z}_{it} + \ddot{\xi}_{it}.
$$
 (16)

With
$$
\alpha_{2i} = \alpha_2 + \ddot{\alpha}_{2i}
$$
, we get

$$
\ddot{y}_{it} = \beta \ddot{x}_{it} + \alpha_2 \ddot{z}_{it} + \ddot{\alpha}_{2i} \ddot{z}_{it} + \ddot{\epsilon}_{it}.
$$
 (17)

• Strict exogeneity fails:
$$
E(\xi_{it}|x_{it}, z_{it}) \neq 0
$$
 because $Cov(\ddot{\alpha}_{2i}, x_{it}) \neq 0$

Bias of standard FE

Suppose x_{it} depends on slope variable z_{it} With $\delta_i = \delta + \ddot{\delta}_i$ (unobserved effects, like $\alpha_{2i})$ get

$$
\ddot{x}_{it} = \delta \ddot{z}_{it} + \ddot{\delta}_i + \nu_{it},\tag{18}
$$

where ν_{it} is an independent random variable.

▶ Bias of the FE estimator is (Rüttenauer and Ludwig, 2020)

$$
E(\hat{\beta}_{FE}) = \beta + \frac{Var(\ddot{z})Cov(\ddot{\delta}, \ddot{\alpha}_2)}{Var(\ddot{z})Var(\ddot{\delta}) + Var(\ddot{\nu})}
$$
(19)

Estimation of FEIS

▶ 3 ways to control for α_{1i} and α_{2i}

Extend LSDV: include N interactions person dummy X slope variable

$$
y_{it} = \beta x_{it} + \sum_{i=1}^{N} \alpha_{1i} d_i + \sum_{i=1}^{N} \alpha_{2i} d_i z_{it} + \epsilon_{it}
$$
 (20)

Estimation of FEIS

 \triangleright 3 ways to control for α_{1i} and α_{2i}

 \triangleright General Within-transform (FE-IS): subtract person-specific time-varying estimate for each variable

$$
\tilde{y}_{it} = \beta \tilde{x}_{it} + \alpha_{2i} \tilde{z}_{it} + \tilde{\epsilon}_{it}, \qquad (21)
$$

where, for some variable w, $\tilde{w}_{it} = w_{it} - \hat{w}_{it}$,

and \hat{w}_{it} is the predicted value from person-specific regression of w_{it} on $(1, z_{it})$.

► 3 ways to control for α_{1i} and α_{2i}

 \triangleright Extend CRE: include time-varying predicted values in RE

$$
y_{it} = \beta x_{it} + \gamma_1 \bar{x}_i + \gamma_2 \hat{x}_{it} + \alpha_2 z_{it} + \delta \bar{z}_i + \epsilon_{it} \qquad (22)
$$

 \triangleright Extended CRE suggests a simple test for FE heterogeneity bias \blacktriangleright Artificial Regression Test for FEIS vs. FE

Specification test

- \triangleright With the CRE estimation approach, we can devise a version of the Hausman test: Artificial Regression Test (ART)
- \triangleright CRE to estimate FE within effects

$$
y_{it} = \beta x_{it} + \gamma \bar{x}_i + \alpha_2 z_{it} + \delta \bar{z}_i + \xi_{it}
$$
 (23)

The RE is a restricted model of the CRE: With restriction $\gamma = 0$ we get

$$
y_{it} = \beta x_{it} + \alpha_2 z_{it} + \delta \bar{z}_i + \xi_{it}
$$
 (24)

After CRE estimation, we test H_0 : $\hat{\gamma}=0$ Using a Wald test, $H \sim \chi^2(K)$. If $p < 0.05$, H_0 is rejected, i.e. we use FE.

Specification test

 \triangleright The CRE approach can also be used to test FEIS vs. FE

$$
y_{it} = \beta x_{it} + \gamma_1 \bar{x}_i + \gamma_2 \hat{x}_{it} + \alpha_2 z_{it} + \delta \bar{z}_i + \epsilon_{it} \qquad (25)
$$

The FE is a restricted model of the CRE: With restriction $\gamma_2 = 0$ we get the FE estimator

After CRE estimation, we test H_0 : $\hat{\gamma}_2 = 0$ Using a Wald test, $H \sim \chi^2(K)$. If $p < 0.05$, H_0 is rejected, i.e. we use FEIS.

 \triangleright ART works even though FE is not efficient! (Arellano 1993) \blacktriangleright Important side-effect: can use panel-robust standard errors

Estimation and tests using Stata or R

 \blacktriangleright Note: alternatives for estimation

- \triangleright in Stata: reghdfe by Sergio Correia
- \triangleright in R: 1 fe by Simen Gaure or fixest by Laurent Berge

Monte Carlo Simulations

'Elwetritsch' - our High Performance Cluster at TUK

Basic setup

Generate panel data with $N = 300$ and $T = 10$ \blacktriangleright DGP

$$
y_{it} = \beta x_{it} + \alpha_{1i} + \alpha_{2i} z_{it} + \epsilon_{it}, \qquad (26)
$$

$$
x_{it} = \theta \alpha_{1i} + \delta_i z_{it} + \nu_{it}, \qquad (27)
$$

- \blacktriangleright where ϵ_{it} , ν_{it} are Gaussian,
- \triangleright α_{1i} is a normally dist random variable,
- \blacktriangleright $\theta \in \{0, 1\}$ specifies bias due to α_{1i}
- \triangleright α_{2i} and δ_i drawn from a bivariate normal dist with $\phi = \text{Cov}(\delta, \alpha_2)$
- \blacktriangleright ϕ specifies bias due to α_{2i}
- **Parameters for Var(δ), Var(z) and Var(** ν **) are set to fixed** values
- True $\beta = 1$
- \triangleright Estimate RE, FE, FEIS and ARTs in 1,000 replications,
	- Compute mean bias of $\hat{\beta}$ and rejection rate (at 5 % level)

Simulation results: Bias in RE and FE

 \blacktriangleright Bias due to α_{2i} , no bias due to α_{1i}

Simulation results: Bias in RE and FE

Summary

- \blacktriangleright FE biased if heterogenous slopes of some variable related to the causal variable
- \triangleright Can use xtfeis Stata or feisr in R to estimate unbiased FEIS and test for bias due to α_{2i}
- ▶ Standard Hausman test for FE versus RE has no power to detect bias due to α_{2i}
	- \blacktriangleright Might choose wrong estimator
	- If bias due to α_{1i} and α_{2i} have opposite sign and cancel each other out, FE and RE give similar estimates
- \triangleright Simulations show the ART for FEIS versus FE (or RE) has good size and power to detect the bias
	- \triangleright Can be applied with clustered s.e.
	- \blacktriangleright alternative: bootstrapped Hausman test (BSHT)

Limitations

 \blacktriangleright FEIS still is not the magic bullet

 \blacktriangleright Like FE, extended FEIS biased in situations with

- measurement error on the treatment variable (or other covariates) [\(Griliches and Hausman, 1986\)](#page-49-10)
- ▶ true DGP including a Lagged Dependent Variable [\(Nickell,](#page-49-11) [1981;](#page-49-11) [Phillips and Sul, 2007\)](#page-49-12)
- \triangleright with variation of treatment timing and variation of the treatment effect over time left unspecified [\(Meer and West,](#page-49-13) [2016;](#page-49-13) [Goodman-Bacon, 2018\)](#page-49-14)

Extensions

- \blacktriangleright FEIS is more general (and more efficient) than the Random Trend estimator (Second Differencing)
- \triangleright Can be extended to all sorts of multi-level data structures (Rüttenauer and Ludwig, 2020)
	- \triangleright children in families, students in schools, workers in firms, persons in countries
	- \blacktriangleright data with more than two levels possible
- \triangleright Unit-specific slopes possible also for poisson (FEIS poisson) [\(Correia et al., 2020\)](#page-49-15)

The male marital wage premium

Study by Ludwig and Brüderl (2018)

Effect of preschool on cognitive ability

Rüttenauer and Ludwig (2020), replication of [Deming \(2009\)](#page-49-17)

[Intro](#page-26-0) [FE Bias](#page-27-0) [FEIS Estimation](#page-34-0) [FEIS vs. FE](#page-37-0) [Software](#page-39-0) [Simulation](#page-40-0) [Final remarks](#page-44-0) **[Examples](#page-47-0)** 49 / 50

References I

- Allison, P. D. (2009). Fixed Effects Regression Models, volume 160 of Quantitative Applications in the Social Sciences. Sage, Los Angeles.
- Angrist, J. D. and Pischke, J.-S. (2015). Mastering 'Metrics: The Path from Cause to Effect. Princeton Univ. Press, Princeton.
- Brüderl, J. and Ludwig, V. (2015). Fixed-Effects Panel Regression. In Best, H. and Wolf, C., editors, The Sage Handbook of Regression Analysis and Causal Inference, pages 327–357. Sage, Los Angeles.
- Chamberlain, G. (1982). Multivariate Regression Models for Panel Data. Journal of Econometrics, 18(1):5–46.
- Correia, S., Guimarães, P., and Zylkin, T. (2020). Fast Poisson estimation with high-dimensional fixed effects. The Stata Journal, 20(1):95–115.
- Croissant, Y. and Millo, G. (2019). Panel Data Econometrics with R. John Wiley and Sons, Hoboken, NJ.
- Deming, D. (2009). Early Childhood Intervention and Life-Cycle Skill Development: Evidence from Head Start. American Economic Journal: Applied Economics, 1(3):111–134.
- Firebaugh, G. (2008). Seven Rules for Social Research. Princeton University Press, Princeton, N.J. and Woodstock.
- Goodman-Bacon, A. (2018). Difference-in-Differences with Variation in Treatment Timing. NBER Working Paper, 25018.
- Griliches, Z. and Hausman, J. A. (1986). Errors in Variables in Panel Data. Journal of Econometrics, 31(1):93–118.
- Hausman, J. A. (1978). Specification Tests in Econometrics. Econometrica, 46(6):1251–1271.
- Ludwig, V. and Brüderl, J. (2018). Is There a Male Marital Wage Premium? New Evidence from the United States. American Sociological Review, 83(4):744–770.
- Meer, J. and West, J. (2016). Effects of the Minimum Wage on Employment Dynamics. Journal of Human Resources, 51(2):500–522.
- Mundlak, Y. (1978). On the Pooling of Time Series and Cross Section Data. Econometrica, 46(1):69.
- Nickell, S. (1981). Biases in Dynamic Models with Fixed Effects. Econometrica, 49(6):1417.
- Phillips, P. C. and Sul, D. (2007). Bias in Dynamic Panel Estimation with Fixed Effects, Incidental Trends and Cross Section Dependence. Journal of Econometrics, 137(1):162–188.
- Rüttenauer, T. and Ludwig, V. (2020). Fixed Effects Individual Slopes: Accounting and Testing for Heterogeneous Effects in Panel Data or Other Multilevel Models. Sociological Methods & Research, OnlineFirst.

Wooldridge, J. M. (2010). Econometric Analysis of Cross Section and Panel Data. MIT Press, Cambridge, Mass.