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Part I

Conventional Panel Models
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Session I

Aim

I Intuitive understanding of panel estimators

I Differences between estimators

I How to decide in practice

Outline

I FE analysis with panel data

I RE, FE, Hybrid / Mundlak framework

I Hausman specification test

I Some practical guidance
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Cross-sectional data
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I Conventional Pooled OLS

I Positive correlation
between age - happiness

yit = α + β1xit + υit

I Estimator based on complete variance over all observations

I This does not account for any type of clustering, and every
observation is treated as an independent case

I Regression minimizes distance to all points
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Cross-sectional data
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Younger cohort
Older cohort

I Conventional Pooled OLS

I Controlling for cohort

I Correlation positive, but
weaker

yit = α + β1xit + β2zit + υit

I Estimator based on variance within each cohort

I Regression minimizes distance to points of the same cohort,
and discards between-cohort variance

I But still cross-sectional
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Advantage of panel data
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I Within estimator

I Person-fixed OLS

I Controlling for individual
person

I Correlation negative

yit = β1xit + αi + εit

I Estimator based on within-person variance only

I Regression minimizes distance to points of the same individual

I This is solely based on changes over time, and discards
between-person variance
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We can also turn this around
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I Between estimator

I BE = POLS - FE

I Using only person-averages

I Correlation close to POLS

ȳi = α + β1x̄i + ῡi

I Estimator based on between-person variance only

I Regression minimizes distance to points of individual averages

I This is solely based on differences between individuals, and
discards within-person variance
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Advantage of panel data

More information

I Observed trajectories over life-course

I Observed order of events

I Between and within variance

Better identification strategies

I Correlation of changes rather than states

I Counterfactual based on same individual

I Relaxes some strong assumptions

I Closer to a causal effect
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Pooled OLS (POLS) estimator

yit = α + βxit + υit (1)

Main assumption for consistency

I E(υit |xit) = 0, Cov(xit , υit) = 0

Error (including omitted variables) must
not be correlated with xit

Problems

I in observational studies: rarely all
confounders observed

I xit is likely endogenous, thus β̂x biased
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Fixed Effects (FE) estimator

yit =βxit + αi + εit (2)

FE =POLS − BE (3)

(yit − ȳi ) =β(xit − x̄i ) + (εit − ε̄i ) (4)

I Two error components υit = αi + εit

Main assumption for consistency
I E(εit |xi , αi ) = 0

Idiosyncratic time-variation in εi must be uncorrelated with
variation in xi across all time periods

I but E(αi |xi ) can be any function of xi

Time-constant level-differences are
allowed to correlate with xi

I we still get an unbiased estimate of βx
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Fixed Effects (FE) estimator
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I OLS on demeaned data

I Deviations from
person-mean

I Do deviations within the
same person correlate?

I Similar for binary and
continuous data

I All time-constant
information is discarded

I including potential
confounders 2000
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Fixed Effects (FE) estimator

yit =βxit + αi + εit (2)

FE =POLS − BE (3)

(yit − ȳi ) =β(xit − x̄i ) + (εit − ε̄i ) (4)

Potential problems

I Inefficient: cannot estimate effect of time-constant x

I One-way FE ignores units without variation in x

I Uncontrolled time-varying confounders
still bias β̂FE
e.g. economic recession over the 4 waves
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Two-ways FE

yit =βxit + αi + ζt + εit (5)

(yit − ȳi − ȳt + ȳ) =β(xit − x̄i − x̄t + x̄) + (εit − ε̄i − ε̄t + ε̄) (6)

where ζt are time fixed effects (analogous to αi )

Advantage over oneway FE

I Removes common time shocks independent of treatment

I Takes back in individuals without variation in x

I Adds a ‘control-group’ to the estimation

Main assumption

I Parallel trends between ‘treatment’ and ‘control’ units
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Marriage wage premium
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One-way FE

I Discards never-treated

I Adds time-shocks to
treatment effect

I Biased marriage effect
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Two-ways FE

I Uses never-married as
‘control group’

I True marriage effect
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Marriage wage premium
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I Same premium as before
(500 EUR)

I But steeper trajectory for
ever married

I Parallel trends
assumption violated

I Both one-way and two-ways FE are biased

I One-way FE adds time shocks + trend

I Two-ways FE adds trend

⇒ Solution: Fixed Effects Individual Slopes

Intro Panel Data FE estimator RE estimator Tests Practical Guide 15 / 50



Random Effects (RE) estimator

(yit − λȳi ) =β(xit − λx̄i ) + (εit − λε̄i ) (7)

where λ̂ = 1−
√

σ2
ε

σ2
ε+Tσ2

α
, with σ2

ε denoting the residual variance,

and σ2
α denoting the variance of the individual effects αi .

I RE is estimator on the ‘quasi-demeaned’ data
I Weighted average of between and within estimator

I Weights determined by
residual variance in FE as
share of total residual
variance

I T large, σ2
α large → FE

I σ2
α small → POLS
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BE-POLS-RE-FE

βPOLS = ωOLSβFE + (1− ωOLS)βBE
I where ωOLS = σ2

x̃/σ
2
x , with x̃ = x − x̄i

βRE = ωGLSβFE + (1− ωGLS)βBE

I where ωGLS =
σ2
x̃

σ2
x̃+φ2(σ2

x−σ2
x̃ )

, and φ =

√
σ̂2
FE

σ̂2
BE

I here ωOLS = 0.026

β̂POLS close to β̂BE
I ωGLS = 0.509

β̂RE in the middle of β̂BE
and β̂FE

⇒ most efficient 4
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Random Effects (RE) estimator

Main assumption for consistency

I E(εit |xi , αi ) = 0 (FE assumption) and

I E(αi |xi ) = 0 (RE assumption)

In addition to FE assumption, the individual-specific fixed
effects must not be correlated with xi

Correlated level differences in y and x bias β̂RE

I RE is most efficient estimator

I important for prediction tasks

I but relies on strong assumption

I β̂ likely biased in practice
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Mundlak / Correlated Random Effects (CRE)

We can also estimate the within effect in RE framework

yit =α + βxit + γx̄i + ξit (8)

I we split up the individual effect αi = γx̄i + ηi
I and thus only control partially for time-constant heterogeneity

by adding the person-specific means x̄i
I β̂ thus gives us the within estimate for x

I and for consistency of β̂x we only need E(εit |xi , x̄i ) = 0:
equals the FE assumption for variables additionally included as
person-specific means

I usually, include mean for all time-varying x (except t)

(Chamberlain, 1982; Mundlak, 1978)
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Hausman test

H =(β̂1 − β̂0)ᵀ(N−1
Vβ̂1−β̂0

)−1(β̂1 − β̂0), (9)

where β̂1 is consistent, and β̂0 is efficient.
N−1

Vβ̂1−β̂0
= Var(β̂1 − β̂0)

with RE being fully efficient: Var(β̂1 − β̂0) = Var(β̂1)−Var(β̂0)
(Hausman, 1978)

I β̂1 is consistent, and β̂0 efficient

I H0: β̂FE = β̂RE
I The test shows us if the two estimates differ significantly

⇒ Use FE if Hausman test significant, and H0 rejected

Obviously, not helpful if both estimates are biased
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Artificial Regression Test

We can also use the CRE to perform a Hausman test

yit =α + βxit + γx̄i + ξi , (10)

I Estimated via RE

I RE estimator consistent if H0: γ = 0,

I in this case, γx̄i can be omitted, reducing (10) to RE

I With more than one covariate, we can just perform a joint
Wald χ2 test on all or a subset of γ̂

⇒ Identical to conventional HT, but allows for a variety of
different (robust) standard errors
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Some practical guidance

Research question

I Let theory decide

I Between or within question?

I Descriptive or causal relation?

‘Older people are happier’

I Descriptive statement

I Between comparison ⇒ BE
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‘Getting older makes happier’

I Causal statement

I Within comparison ⇒ FE

I Why would one use between variance for this statement?

Intro Panel Data FE estimator RE estimator Tests Practical Guide 22 / 50



Some practical guidance

Caution with RE and POLS

I Both mix within and between variance

I Both rely on strong assumptions

I Very likely to be biased in practice
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I Substantive interpretation of results?

I Causal questions likely to require within variance only

One should always

I check how close the coefficients are to BE and FE

I test for consistency (Hausman test)
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Some practical guidance

FE estimator

I Only within variance

I Weaker assumptions

I Correlation based on changes in x
and y

I Closer to a causal effect
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Usually, one should

I use two-ways FE estimators

I check the amount of within variance in the data

I test the parallel trends assumption

I Consider time-varying confounders
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Further readings

Extensive slides by Josef Brüderl and Volker Ludwig
https://www.ls3.soziologie.uni-muenchen.de/

studium-lehre/archiv/teaching-marterials/

panel-analysis_april-2019.pdf

See also Brüderl and Ludwig (2015)

Books

I Intuitive: Allison (2009)

I Comprehensive and formal: Wooldridge (2010)

I For R users: Croissant and Millo (2019)

I General introduction (e.g. for teaching):
Angrist and Pischke (2015); Firebaugh (2008)
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Part II

Fixed Effects Individual Slopes
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Session II

Aim

I Extend standard FE methods to cover situations with
heterogeneous slopes (Wooldridge, 2010)

I Detect bias due to heterogeneous slopes and eliminate the bias

Outline

I FE bias due to heterogeneous slopes

I Estimation of FEIS estimator

I Specification test for FEIS vs. FE
I Implementation

I Stata: xtfeis (Ludwig 2015)
I R: feisr (Rüttenauer and Ludwig, 2020)

I Monte Carlo results
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The problem with heterogeneous slopes
I Leading case: effect of some event (binary treatment) xit on

continuous outcome yit , controlling for time zit

yit = βxit + α1i + α2izit + εit . (11)

DGP: yit = 1 + β · xit + 0.5 · t + 1 · treati
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xtreg y x t, fe

plm(y ∼ x + t, model
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The problem with heterogeneous slopes
I Leading case: effect of some event (binary treatment) xit on

continuous outcome yit , controlling for time zit

yit = βxit + α1i + α2izit + εit . (12)

DGP: yit = 1 + β · xit + 0.25 · t + 1 · treati + 0.25 · treati · t
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xtreg y x t, fe

plm(y ∼ x + t, model

= "within", effect =

"individual")
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Estimation of standard FE

I 3 ways to control for α1i

I Least Squares Dummy Variable (LSDV): include N person
dummies

I estimate by Pooled OLS

yit = βxit +
N∑
i=1

α1idi + α2zit + ξit (13)
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Estimation of standard FE

I 3 ways to control for α1i

I Time-demeaning (FE): subtract person-specific average for
each variable

I estimate by Pooled OLS

ÿit = βẍit + α2z̈it + ξ̈it , (14)

where, for some variable w , ẅit = wit − w̄i .
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Estimation of standard FE

I 3 ways to control for α1i

I Correlated Random Effects (CRE): include person-specific
average for each indep var in the equation

I estimate by Generalized Least Squares (GLS)

yit = βxit + γx̄i + α2zit + δz̄i + ξit (15)

I CRE suggests a simple test for RE heterogeneity bias
I Artificial Regression Test for FE vs. RE
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Bias of standard FE

I Condition for consistency of FE is strict exogeneity of the
idiosyncratic error term

I Violated if we estimate

ÿit = βẍit + α2z̈it + ξ̈it . (16)

With α2i = α2 + α̈2i , we get

ÿit = βẍit + α2z̈it + α̈2i z̈it + ε̈it . (17)

I Strict exogeneity fails:E (ξit |xit , zit) 6= 0 because
Cov(α̈2i , xit) 6= 0
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Bias of standard FE

I Suppose xit depends on slope variable zit

With δi = δ + δ̈i (unobserved effects, like α2i ) get

ẍit = δz̈it + δ̈i + νit , (18)

where νit is an independent random variable.
I Bias of the FE estimator is (Rüttenauer and Ludwig, 2020)

E(β̂FE ) = β +
Var(z̈)Cov(δ̈, α̈2)

Var(z̈)Var(δ̈) + Var(ν̈)
(19)
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Estimation of FEIS

I 3 ways to control for α1i and α2i

I Extend LSDV: include N interactions person dummy X slope
variable

yit = βxit +
N∑
i=1

α1idi +
N∑
i=1

α2idizit + εit (20)
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Estimation of FEIS

I 3 ways to control for α1i and α2i

I General Within-transform (FE-IS): subtract person-specific
time-varying estimate for each variable

ỹit = βx̃it + α2i z̃it + ε̃it , (21)

where, for some variable w , w̃it = wit − ŵit ,

and ŵit is the predicted value from person-specific regression
of wit on (1, zit).
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Estimation of FEIS

I 3 ways to control for α1i and α2i

I Extend CRE: include time-varying predicted values in RE

yit = βxit + γ1x̄i + γ2x̂it + α2zit + δz̄i + εit (22)

I Extended CRE suggests a simple test for FE heterogeneity bias
I Artificial Regression Test for FEIS vs. FE
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Specification test

I With the CRE estimation approach, we can devise a version of
the Hausman test: Artificial Regression Test (ART)

I CRE to estimate FE within effects

yit = βxit + γx̄i + α2zit + δz̄i + ξit (23)

The RE is a restricted model of the CRE:

With restriction γ = 0 we get

yit = βxit + α2zit + δz̄i + ξit (24)

I After CRE estimation, we test H0 : γ̂ = 0

Using a Wald test, H ∼ χ2(K ).

If p < 0.05, H0 is rejected, i.e. we use FE.
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Specification test

I The CRE approach can also be used to test FEIS vs. FE

yit = βxit + γ1x̄i + γ2x̂it + α2zit + δz̄i + εit (25)

The FE is a restricted model of the CRE:

With restriction γ2 = 0 we get the FE estimator

I After CRE estimation, we test H0 : γ̂2 = 0

Using a Wald test, H ∼ χ2(K ).

If p < 0.05, H0 is rejected, i.e. we use FEIS.

I ART works even though FE is not efficient! (Arellano 1993)
I Important side-effect: can use panel-robust standard errors

Intro FE Bias FEIS Estimation FEIS vs. FE Software Simulation Final remarks Examples 39 / 50



Estimation and tests using Stata or R

Stata
Installation ssc install xtfeis

Estimation xtfeis y x , slope(t) cluster(id)

ART xtart [FEIS] [, fe re]

BSHT xtbsht FEIS FE, seed(123) reps(100)

R
Installation install.packages("feisr")

Estimation feis(y ∼ x | t, data=df, id="id", robust=TRUE)

ART feistest(FEIS, robust=TRUE, type="all")

BSHT bsfeistest(FEIS, seed=123, rep=100, type="all")

I Note: alternatives for estimation
I in Stata: reghdfe by Sergio Correia
I in R: lfe by Simen Gaure or fixest by Laurent Berge
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Monte Carlo Simulations

‘Elwetritsch’ - our High Performance Cluster at TUK
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Basic setup
I Generate panel data with N = 300 and T = 10

I DGP

yit =βxit + α1i + α2izit + εit , (26)

xit =θα1i + δizit + νit , (27)

I where εit , νit are Gaussian,
I α1i is a normally dist random variable,
I θ ∈ {0, 1} specifies bias due to α1i

I α2i and δi drawn from a bivariate normal dist with
φ = Cov(δ,α2)

I φ specifies bias due to α2i

I Parameters for Var(δ), Var(z) and Var(ν) are set to fixed
values

I True β = 1

I Estimate RE, FE, FEIS and ARTs in 1,000 replications,

I Compute mean bias of β̂ and rejection rate (at 5 % level)
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Simulation results: Bias in RE and FE

I Bias due to α2i , no bias due to α1i
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Simulation results: Bias in RE and FE

I Bias due to α2i and α1i
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Summary

I FE biased if heterogenous slopes of some variable related to
the causal variable

I Can use xtfeis Stata or feisr in R to estimate unbiased
FEIS and test for bias due to α2i

I Standard Hausman test for FE versus RE has no power to
detect bias due to α2i

I Might choose wrong estimator
I If bias due to α1i and α2i have opposite sign and cancel each

other out, FE and RE give similar estimates

I Simulations show the ART for FEIS versus FE (or RE) has
good size and power to detect the bias
I Can be applied with clustered s.e.
I alternative: bootstrapped Hausman test (BSHT)
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Limitations

I FEIS still is not the magic bullet
I Like FE, extended FEIS biased in situations with

I measurement error on the treatment variable (or other
covariates) (Griliches and Hausman, 1986)

I true DGP including a Lagged Dependent Variable (Nickell,
1981; Phillips and Sul, 2007)

I with variation of treatment timing and variation of the
treatment effect over time left unspecified (Meer and West,
2016; Goodman-Bacon, 2018)
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Extensions

I FEIS is more general (and more efficient) than the Random
Trend estimator (Second Differencing)

I Can be extended to all sorts of multi-level data structures
(Rüttenauer and Ludwig, 2020)
I children in families, students in schools, workers in firms,

persons in countries
I data with more than two levels possible

I Unit-specific slopes possible also for poisson (FEIS poisson)
(Correia et al., 2020)
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The male marital wage premium
Study by Ludwig and Brüderl (2018)

Intro FE Bias FEIS Estimation FEIS vs. FE Software Simulation Final remarks Examples 48 / 50



Effect of preschool on cognitive ability
Rüttenauer and Ludwig (2020), replication of Deming (2009)Ñ®·¹·²¿´ Í¿³°´» Í«¾­¿³°´»

Î»°´·½¿¬·±² ÚÛ ÚÛ×Í ÚÛ î Î×ÎÍ î ÚÛ×Í î
øï÷ øî÷ øí÷ øì÷ øë÷ øê÷

Ø»¿¼ Í¬¿®¬
ß¹»­ ë�ê ðòïìí ðòïíí ðòíëðöö ðòïìè ðòïéêö ðòíêèöö

øðòðèë÷ øðòðèé÷ øðòïïë÷ øðòïðí÷ øðòðèê÷ øðòïîì÷
ß¹»­ é�ïð ðòïíîö ðòïïé ðòíïçööö ðòïðë ðòïííö ðòííðööö

øðòðëç÷ øðòðêð÷ øðòðçê÷ øðòðêê÷ øðòðëì÷ øðòðçï÷
ß¹»­ ïï�ïì ðòðëì ðòðîç ðòîìïö ðòðìï ðòðéð ðòîçíöö

øðòðêï÷ øðòðêï÷ øðòïðî÷ øðòðêê÷ øðòðëí÷ øðòïðð÷
Ñ¬¸»® Ð®»­½¸±±´

ß¹»­ ë�ê ðòðèï ðòïðë ðòðçë
øðòðèì÷ øðòðèí÷ øðòïíî÷ øðòïêê÷ øðòïïí÷ øðòîéð÷

ß¹»­ é�ïð ðòðìê ðòðîç ðòððç ðòððð ðòðêê ðòðçî
øðòðêì÷ øðòðêï÷ øðòïîð÷ øðòïïè÷ øðòðéè÷ øðòîëì÷

ß¹»­ ïï�ïì ðòðîí ðòðìð ðòðêð
øðòðêç÷ øðòðêê÷ øðòïîð÷ øðòïîð÷ øðòðèð÷ øðòîëë÷

Ð®»¬®»¿¬³»²¬
·²¼»¨

ðòðëê
øðòðíì÷

Îî òðëð òðîð òðíï òðîé òðíè
ß¼¶«­¬»¼ Îî òðçç òïïë òðîé
Ò«³¾»® ±º

±¾­»®ª¿¬·±²
ìôêèé ìôêìê ìôêìê îôïðî îôïðî îôïðî

Ò«³¾»® ±º
¹®±«°­æ
Ó±¬¸»®×Ü

ëìï îïï îïï

Intro FE Bias FEIS Estimation FEIS vs. FE Software Simulation Final remarks Examples 49 / 50



References I
Allison, P. D. (2009). Fixed Effects Regression Models, volume 160 of Quantitative Applications in the Social

Sciences. Sage, Los Angeles.

Angrist, J. D. and Pischke, J.-S. (2015). Mastering ’Metrics: The Path from Cause to Effect. Princeton Univ.
Press, Princeton.
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