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Abstract

Spatial regression models provide the opportunity to analyze spatial data
and spatial processes. Yet, several model specifications can be used, all
assuming different types of spatial dependence. This study summarizes
the most commonly used spatial regression models and offers a com-
parison of their performance by using Monte Carlo experiments. In
contrast to previous simulations, this study evaluates the bias of the
impacts rather than the regression coefficients and additionally provides
results for situations with a nonspatial omitted variable bias. Results
reveal that the most commonly used spatial autoregressive and spatial
error specifications yield severe drawbacks. In contrast, spatial Durbin
specifications (SDM and SDEM) and the simple spatial lag of X (SLX)
provide accurate estimates of direct impacts even in the case of mis-
specification. Regarding the indirect “spillover” effects, several—quite
realistic—situations exist in which the SLX outperforms the more
complex SDM and SDEM specifications.
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The increasing availability of spatially aggregated and georeferenced data

has led to an increasing interest in spatial analyses among social scientists

(Logan 2012). For instance, social scientists have investigated the influence

of contextual conditions (e.g., Crowder, Hall, and Tolnay 2011; Friedrichs,

Galster, and Musterd 2003; Kling, Liebman, and Katz 2007; Sampson, Mor-

enoff, and Earls 1999; Sampson, Morenoff, and Gannon-Rowley 2002) or

have dealt with explicitly spatial research questions like segregation, neigh-

borhood boundaries, or the exposure to environmental conditions (e.g., Dok-

shin 2016; Downey 2006; Legewie and Schaeffer 2016; Lichter, Parisi, and

Taquino 2015; Reardon et al. 2008; Rüttenauer 2018).

Still, researchers need to be aware of the fact that analyzing spatial data

bears new challenges regarding the applied methods. In many cases, the

spatial processes are of specific interest and thus require the use of spatial

regression models. However, spatial methods may be necessary for consis-

tent estimators albeit the spatial processes not being of explicit interest. As

Tobler’s (1970) first law of geography puts it, “everything is related to

everything else, but near things are more related than distant things” (p.

236). For instance, it seems plausible to assume that the house prices in one

district are correlated to or even influenced by the house prices in neighbor-

ing districts. In consequence, the observations cannot be considered inde-

pendent and identically distributed, which violates a standard assumption of

linear regression models: EðeiejÞ ¼ EðeiÞEðejÞ ¼ 0, where e is the random

error term for each observation i and j (i 6¼ j). Intuitively, this violation

results in erroneous inferential statistics when using the conventional ordi-

nary least squares (OLS) estimator of the equation y ¼ Xβþ ε. However,

spatial autocorrelation can also lead to biased point estimates, depending on

the spatial process underlying the spatial correlation in the data (e.g., Pace

and LeSage 2010).

Several spatial model specifications exist to deal with this issue by expli-

citly modeling the spatial dependence. Using the spatial weights matrix W,

the most common spatial model specification is the spatial autoregressive

(SAR) model, which adds an endogenous spatially lagged dependent variable

Wy to the conventional regression formula. Alternatively, the spatial error
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model (SEM) models the spatial dependence among the error terms

u ¼Wuþ ε, and the spatial lag of X (SLX) model comprises the spatial

lags of the exogenous covariates WX. Further specifications use a combina-

tion of these most basic specifications. The spatial autoregressive combined

(SAC) model includes autocorrelation in the dependent variable and the error

term (Wy and Wu), the spatial Durbin model (SDM) combines an autore-

gressive dependent variable and spatially lagged covariates (Wy and WX),

and the spatial Durbin error model (SDEM) comprises a spatial error term

combined with spatially lagged covariates (Wu and WX). The specification

containing all three spatial terms (Wy, Wu, and WX) is called general nest-

ing spatial (GNS) model.

On the one hand, those models provide a way to obtain unbiased point

estimates of the true parameters. On the other hand, spatial models offer the

opportunity to estimate spatial spillover coefficients, thereby informing the

researcher about processes of spatial correlation or influence. Still, research-

ers have to consider several options, as the different specifications rely on

different assumptions regarding the spatial dependence. Unfortunately,

empirical specification tests of spatial regression models yield severe draw-

backs, and there is no general rule for selecting the correct model specifica-

tion in applied research. Therefore, it is of substantial interest to evaluate the

performance of spatial model specifications under different scenarios of

misspecification.

This study conducts a systematic comparison of different spatial model

specifications in different scenarios of spatial dependence by using Monte

Carlo experiments. It demonstrates under which conditions conventional

linear models yield biased estimates and how spatial model specifications

perform throughout different scenarios of spatial dependence. The study

extends previous simulations in several ways. First, it evaluates the bias of

the model specifications by relying on the impact estimates rather than the

point estimates, as the model impacts are the measures of interest in applied

research (LeSage and Pace 2018). Second, it systematically evaluates the

performance of the spatial model specifications in the absence and presence

of a nonspatial omitted variable (omv) bias. Third, it incorporates multiple

explanatory variables with distinct spatial effects, as this resembles the case

in applied research.

The results of the Monte Carlo experiments reveal that the most com-

monly used spatial models—SAR and SEM—have severe drawbacks for

applied research. In line with previous findings, those models are outper-

formed by more flexible Durbin specifications incorporating spatially lagged

covariates. However, the results also reveal that, under highly realistic
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conditions, SLX offers a better performance than the Durbin specifications,

especially regarding the indirect spillover effects.

Theoretical Background

As a first step in spatial econometrics, the researcher is required to specify

the spatial relationship between the units of observation, or more precisely, to

define which units j are neighbors of unit i for all units i ¼ f1; 2; :::;Ng. This

is done by setting up an N � N dimensional neighbors weights matrix W,

where all elements wij > 0 for all neighboring units i and j (i 6¼ j) and 0

otherwise. This study relies on a row-normalized contiguity weights matrix,

defining all units as neighbors that share at least one common border. Several

specifications for W exist, such as, for example, K nearest neighbor or

distance-based approaches (see, e.g., Dubin, 2009), and choosing the correct

or incorrect specification may be vital for the results. However, these aspects

have been discussed elsewhere (Corrado and Fingleton 2012; Elhorst and

Halleck Vega 2017; LeSage and Pace 2014; Neumayer and Plümper 2016),

and the focus of this study remains on the model specifications, thereby

assuming a correctly specified W.

Model Specifications

As mentioned above, spatial dependence can be modeled in various ways (for

a comprehensive introduction, see, e.g., Elhorst 2014; LeSage and Pace

2009). The most popular spatial model specification is the SAR model,

which incorporates the spatially weighted dependent variable y as an endo-

genous regressor at the right-hand side of the equation. The SAR model is

defined as:

y ¼ rWyþ Xβþ ε; ð1Þ

where y is an N � 1 vector of the dependent variable, W as defined above, X

an N � K matrix of k ¼ f1; 2; : : :Kg covariates, and ε an N � 1 vector of

normally distributed disturbances. β is a K � 1 vector of parameter esti-

mates, and r represents the autoregressive scalar parameter.1 This SAR

specification assumes that the dependent variable of unit i is directly influ-

enced by the spatially weighted dependent variable of neighboring units j.

For illustration purposes, let’s consider an example analyzing the effect of air

quality and available green spaces on the house prices of a spatial district

(e.g., Anselin and Lozano-Gracia 2008). The house price is the dependent

variable y, while air quality and the availability of green spaces constitute the
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covariates X. According to the specification in the SAR model, we would

assume that the house prices in one district directly influence the house prices

in neighboring districts. An intuitive interpretation for this process might be

that sellers or estate agents determine the prices based on the prices they

observe in neighboring districts.

Another specification of spatial models is the SEM. In contrast to the SAR

specification, the SEM explicitly models spatial autocorrelation between the

disturbances u, represented by the scalar parameter l. The SEM is defined as:

y ¼ Xβþ u;

u ¼ lWuþ ε:
ð2Þ

In this specification, we assume that the spatial correlation between our

units is caused by unobserved characteristics, which are either spatially

clustered or follow a spatial pattern and which are independent of the

included covariates. Using the example above, we could, for instance,

assume that spatially clustered or diffusing crime rates influence the house

prices in the affected areas (but are independent of air quality and available

green space).

A third approach does not incorporate the spatial dependence as an auto-

regressive term of the dependent variable or the error term but directly

models the so-called spatial spillover effects by including the spatially

lagged covariates into the equation. This SLX specification is defined as:

y ¼ XβþWXθþ ε; ð3Þ

where θ is an K � 1 vector of spatial spillover parameters. This model

incorporates the direct effects β of the covariates as well as the indirect

spillover effects θ from the covariates of neighboring units. An important

property of the SLX model is that θ constitutes a K � 1 vector, thus including

a distinct spatial effect for each covariate. Here, we would assume that house

prices in the focal unit are not only influenced by the characteristics in the

focal unit but also by the air quality and green space availability in neighbor-

ing districts. Moreover, we can hypothesize that the neighboring districts

matter only regarding the green spaces but not regarding the air quality, as

we receive a distinct spatial parameter for each covariate.

The three specifications shown above represent the most basic specifica-

tions of spatial models. Yet, there are further specifications that combine the

models mentioned above. The SAC model comprises an autocorrelated

dependent variable and an autocorrelated disturbance, resulting in:
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y ¼ rWyþ Xβþ u;

u ¼ lWuþ ε:
ð4Þ

The SDM, in contrast, combines the spatial spillover specification of the cov-

ariates (SLX) with the SAR term of the dependent variable, resulting in:

y ¼ rWyþ XβþWXθþ ε: ð5Þ

A third combined model is the SDEM, combining the specifications of

SEM and SLX,

y ¼ XβþWXθþ u;

u ¼ lWuþ ε;
ð6Þ

thereby comprising the spatial spillover effects of the covariates as well as an

autocorrelated disturbance term.

Combining all three basic model specifications mentioned above leads to

the GNS model:

y ¼ rWyþ XβþWXθþ u;

u ¼ lWuþ ε:
ð7Þ

Although the GNS specification combines all the spatial processes of the

previous specifications, this model only plays a minor role in applied

research, as this specification—analogous to Manski’s (1993) neighborhood

effects model—is not or only weakly identifiable (Cook, Hays, and Franzese

2015; Gibbons and Overman 2012).2 Although Burridge, Elhorst, and Zigova

(2016) show that the GNS model can be identified in case of a grouped

(block-diagonal) weights matrix, they find that even in this situation, the

model might be overparameterized, thereby providing no additional infor-

mation over SDM or SDEM.

Note that most of the spatial model specifications cannot be estimated by

least squares (LS), as using (constrained) LS estimators for models contain-

ing a spatially lagged dependent variable or disturbance leads to inconsis-

tent results (e.g., Anselin and Bera 1998; Franzese and Hays 2007).

However, an extensive amount of econometric literature discusses different

estimation methods based on (quasi-) maximum likelihood (e.g., Anselin

1988; Lee 2004; Ord 1975) or instrumental variable approaches using

generalized methods of moments (e.g., Drukker, Egger, and Prucha,

2013; Kelejian and Prucha 1998, 2010), in which the endogenous lagged

variables can be instrumented by q higher order lags of the exogenous

regressors ðX;WX;W2X; : : : ;WqXÞ (Kelejian and Prucha 1998).
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Local and Global Spatial Impacts

At first glance, the specifications presented above seem relatively similar in

the way of modeling spatial effects. Yet, they differ in very important

aspects. First, models with an endogenous spatial term (SAR, SAC, and

SDM) assume a very different spatial dependence structure than models with

only exogenous spatial terms as SLX and SDEM specifications. While the

first three assume global spatial dependence, the second two assume local

spatial dependence (Anselin 2003; Halleck Vega and Elhorst 2015; LeSage

and Pace 2009). Second, the interpretation of the coefficients differs greatly

between models with and without endogenous effects. This becomes appar-

ent when considering the reduced form of the equations above. Exemplary

using the SAR model of equation (1), the reduced form is given by:

y� rWy ¼ Xβþ ε;
ðIN � rWÞy ¼ Xβþ ε;

y ¼ ðIN � rWÞ�1ðXβþ εÞ:
ð8Þ

When subsequently taking the first derivative of the explanatory variable

xk from the reduced form in equation (8) to interpret the partial effect of a

unit change in variable xk on y, we receive

qy
qxk

¼ ðIN � rWÞ�1bk ; ð9Þ

for each covariate k ¼ f1; 2; : : : ;Kg. As can be seen from equation (9), the

partial derivative with respect to xk produces an N � N matrix, thereby

representing the partial effect of each unit i onto the focal unit i itself and

all other units j ¼ f1; 2; : : : ; i� 1; iþ 1; : : : ;Ng. The diagonal elements of

equation (9) indicate how each unit i influences itself (change of xi on change

of yi), and each off-diagonal elements in column i represents the effect of i on

each other unit j (change of xi on change of yj). Since reporting the individual

partial effects is usually not of interest, LeSage and Pace (2009) proposed to

average over these effect matrices. While the average diagonal elements of

the effects matrix resulting from equation (9) represent the so-called direct3

impacts of variable xk , the average column sums of the off-diagonal elements

represent the so-called indirect impacts (or spatial spillover effects). The

direct impacts refer to an average effect of a unit change in xi on yi, and the

indirect (spillover) impacts exhibit how a change in xi, on average, influences

all neighboring units yj.
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Table 1 summarizes the direct and indirect impacts for all model speci-

fications outlined above (adopted from Halleck Vega and Elhorst 2015,

p. 345). For OLS, SEM, SLX, and SDEM, the point estimates obtained in

the regression models can be interpreted as partial (direct and indirect)

impacts. However, in case of SAR, SAC, and SDM, point estimates differ

from the partial derivatives (or impacts). Two important consequences fol-

low from the impact estimates presented in Table 1.

First, for SAR, SAC, and SDM, even the direct impacts differ from the

point estimates. This results from the fact that an endogenous term of the

dependent variable Wy contains feedback loops through the system of neigh-

bors (Betz, Cook, and Hollenbach 2019; Franzese and Hays, 2007; Halleck

Vega and Elhorst 2015). A change of xi in the focal unit i influences the focal

unit i itself, but also the neighboring unit j, which in turn influences the focal

unit i in a feedback loop. This feedback loop is part of the direct impact.

Second, the kind of indirect spillover effects in SAR, SAC, and SDM

models differs from the kind of indirect spillover effects in SLX and SDEM

models: While the first three specifications represent global spillover effects,

the latter three specifications represent local spillover effects (Anselin 2003;

LeSage 2014; LeSage and Pace 2009). In case of SLX and SDEM, the spatial

spillover effects can be interpreted as the effect of a one unit change of xk in

the spatially weighted neighboring observations on the dependent variable of

the focal unit; when using a row-normalized contiguity weights matrix, Wxk

is the average value of xk in the neighboring units. Thus, only direct neigh-

bors—as defined in W—contribute to those local spillover effects. In con-

trast, spillover effects in SAR, SAC, and SDM do not only include direct

neighbors but also neighbors of neighbors (second order neighbors) and

further higher order neighbors. This can be seen by rewriting the inverse

in equation (9) as power series4:

Table 1. Direct and Indirect Impacts, Adopted From Halleck Vega and Elhorst
(2015).

Direct Impacts Spatial Spillovers Type

OLS/SEM bk 0 None
SAR/SAC Diagonal elements of

ðI� rWÞ�1bk

Off-diagonal elements of
ðI� rWÞ�1bk

Global

SLX/SDEM bk yk Local
SDM/GNS Diagonal elements of

ðI� rWÞ�1 bk þWyk½ �
Off-diagonal elements of
ðI� rWÞ�1 bk þWyk½ �

Global
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ðIN � rWÞ�1bk ¼ IN þ rWþ r2W2 þ r3W3 þ � � �
� �

bk ¼ IN þ
X1
h¼1

rhWh

 !
bk ;

ð10Þ

where the identity matrix represents the direct effects and the sum represents

the first and higher order indirect effects and the abovementioned feedback

loops. This implies that a change in one unit i does not only affect the direct

neighbors but passes through the whole system toward higher order neigh-

bors, where the impact declines with distance within the neighboring system.

Global indirect impacts thus are “multiplied” by influencing direct neighbors

as specified in W and indirect neighbors not connected according to W, with

additional feedback loops between those neighbors.

Note furthermore, that all diagonal elements diagðWÞ ¼ wii ¼ 0, whereas

the diagonal elements diagðW2Þ ¼ diagðWWÞ 6¼ 0. Intuitively, rW only

represents the effects between direct neighbors (and the focal unit is not a

neighbor of the focal unit itself), whereas r2W2 contains the effects of

second order neighbors, where the focal unit is a second order neighbor of

the focal unit itself. Thus, equation (10) includes feedback effects from r2W2

on, which are part of the direct impacts according to the measures in Table 1.

In consequence, local and global spillover effects represent two distinct

kinds of spatial spillover effects (LeSage 2014). The interpretation of local

spillover effects is straightforward: It represents the effect of all neighbors as

defined by W (the average over all neighbors in case of a row-normalized

weights matrix). For instance, the environmental quality in the focal unit

itself but also in neighboring units could influence the attractiveness of a

district and its house prices. In this example, it seems reasonable to assume

that we have local spillover effects: Only the environmental quality in

directly contiguous units (e.g., in walking distance) is relevant for estimating

the house prices. In contrast, interpreting global spillover effects can be a bit

more difficult. Intuitively, the global spillover effects can be seen as a kind of

diffusion process. For example, an exogenous event might increase the house

prices in one district of a city, thus leading to an adaptation of house prices in

neighboring districts, which then leads to further adaptations in other units

(the neighbors of the neighbors), thereby globally diffusing the effect of the

exogenous event due to the endogenous term. Yet, those processes happen

over time. In a cross-sectional framework, the global spillover effects are

hard to interpret. Anselin (2003) proposes an interpretation as an equilibrium

outcome, where the partial impact represents an estimate of how this long-

run equilibrium would change due to a change in xk (see also LeSage 2014).
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Bias in Nonspatial OLS

With exogenous covariates. So far, this study has summarized different

spatial model specifications and discussed the types of spatial effects

defined by those specifications. However, even if spatial effects are not

of specific interest, spatial dependence can influence the estimation

results. Nonspatial OLS models may not only exhibit erroneous inference

but also biased estimates in some cases of spatial correlation. Still, it is

important to distinguish between two kinds of biases, resulting from the

discussion of direct and indirect impacts above. First, one could say that

the unbiased estimate is the nonspatial parameter bk . Second, one could

also say that the unbiased estimate is the direct impact of xk, which does

not only include the nonspatial effect but also the feedback loops. As

discussed elsewhere (Gibbons and Overman 2012; Gibbons, Overman,

and Patacchini 2015), if a researcher is interested in the treatment effect

(e.g., of a political intervention), the total direct impact including feed-

back loops might be of more interest than the nonspatial effect. The

nonspatial parameter bk does not include feedback effects and thus actu-

ally underestimates the impact of a chance in xik on yi. Note that the

nonspatial parameter reflects the first derivative of the nonreduced spatial

regression formula as in equation (1), while the direct impacts (with

feedback effects) are given by the diagonal elements of the first deriva-

tive of the reduced form as in equation (8). Thus, the choice of which

effect is the correct “treatment” effect does also affect the discussion

under which conditions a nonspatial OLS model produces biased esti-

mates of a spatial data generating process (DGP).

Suppose the DGP follows a GNS as defined in equation (7), but we

erroneously assume the DGP was y ¼ xbþ υ and use the OLS estimator

b̂ ¼ ðx

?

xÞ�1x

?

y for estimation of the parameter b. For simplicity, we will

consider the case with only a single explanatory variable in the following

section. As shown by Franzese and Hays (2007), using the nonreduced form

of equation (7) as DGP leads to the following estimate for b:

b̂ ¼ ðx

?

xÞ�1x

?

ðrWyþ xbþWxyþ lWuþ εÞ

plim b̂ ¼ bþ r
Covðx;WyÞ

VarðxÞ þ y
Covðx;WxÞ

VarðxÞ þ l
Covðx;WuÞ

VarðxÞ þ Covðx; εÞ
VarðxÞ ;

ð11Þ

where Wy, Wx, Wu, and ε are omvs, producing a bias similar to the con-

ventional (nonspatial) omv bias resulting from Covðx;υÞ 6¼ 0. If we assume
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that we do not suffer from a nonspatial omv bias and ε is independent and

randomly distributed, EðεjxÞ ¼ 0, therefore also EðWujxÞ ¼ 0, we get an

expectation of 0 for the last two terms in equation (11). As in the standard

case of an omv, the bias resulting from estimating a nonspatial OLS if spatial

dependence is present depends on Covðx; zÞ and Covðy; zÞ, where z is the

omv Wy or Wx.

Still, if one argues that the unbiased causal effect of a change in x is given

by the direct impacts as described in Table 1, we need to rewrite the DGP in

reduced form:

y ¼ ðIN � rWÞ�1ðxbþWxyþ LðlÞεÞ; ð12Þ

where x and ε are independent and randomly distributed Nð0;s2
xÞ and

Nð0;s2
eÞ with a mean of zero, and for simplicity, we define

LðlÞ ¼ ðIN � lWÞ�1
. Consequently, we derive at a different expectation

for the estimate in nonspatial OLS models:

b̂ ¼ ðx

?

xÞ�1x

?

ðIN � rWÞ�1ðxbþWxyþ LðlÞεÞ;

¼ ðx

?

xÞ�1x

?

ðIN � rWÞ�1xbþ ðx

?

xÞ�1x

?

ðIN � rWÞ�1Wxy

þðx
?

xÞ�1x
?

ðIN � rWÞ�1LðlÞε:

ð13Þ

For independent random vectors x and symmetric real matrices A, Girard

(1989) and Pace and LeSage (2010) show that E ðx

?

xÞ�1x

?

Ax
� �

¼

N�1trðAÞ. Furthermore, we know that E ðx

?

xÞ�1x

?

LðlÞε
� �

¼ 0, as x and

ε are independent and therefore EðεjxÞ ¼ 0. Thus, equation (13) can be

simplified to

plim b̂ ¼ 1

N
tr ðIN � rWÞ�1ðbþWyÞ
� �

; ð14Þ

which equals the average diagonal elements of ðIN � rWÞ�1ðbþWyÞ.
Note that this equals exactly the summary measure for the direct impacts

in the GNS model as defined by LeSage and Pace (2009) and described

in Table 1. Thus, the nonspatial OLS provides an unbiased estimate of

the direct impacts, though it does not provide an unbiased estimate of the

parameter b. Betz et al. (2019) show in detail why the parameter esti-

mates of a nonspatial model are even biased if the covariates are ran-

domly distributed but interdependence in the dependent variable (r > 0)

is present.
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The discussion above shows that nonspatial OLS provides unbiased

estimates of the direct impacts if x is exogenous even in cases in which

the true DGP follows a process with spatial autocorrelation and spatial

spillover effects. Thus, if we are not particularly interested in spatial

effects, a spatially autocorrelated dependent variable does not necessa-

rily require the use of spatial regression models. However, this is only

valid if a change in x is exogenously determined, and values of the

covariates do not follow a spatial pattern. The following section shows

in detail under which circumstances the nonspatial estimator is

unbiased and which circumstances lead to biased estimates in the non-

spatial OLS model.

With spatially dependent covariates. Although the case of a spatially auto-

correlated dependent variable and randomly distributed covariates

might be possible, it often seems more plausible that both variables

of interest exhibit at least some kind of spatial dependence when using

spatial data. For instance, in the example above, it seems reasonable to

assume that house prices and environmental quality are spatially

correlated.

To see what that means for the estimator, we will now consider the

case in which not only the dependent but also the covariate x is spatially

autocorrelated. Therefore, we define x ¼ dWxþ υ or in reduced form

x ¼ ðIN � dWÞ�1υ, where υ*Nð0;s2
uÞ, and d denotes the autocorrela-

tion in x. Consequently, we can rewrite equation (13) as:

b̂ ¼
υ

?

ðIN � dWÞ�1
� � ?

ðIN � rWÞ�1ðIN � dWÞ�1υ

υ

?

ðIN � dWÞ�1
� � ?

ðIN � dWÞ�1υ
b

þ
υ

?

ðIN � dWÞ�1
� � ?

ðIN � rWÞ�1ðIN � dWÞ�1Wυ

υ

?

ðIN � dWÞ�1
� � ?

ðIN � dWÞ�1υ
y

þ υ

?

ððIN � dWÞ�1Þ

?

ðIN � rWÞ�1ðIN � dWÞ�1LðlÞε

υ

?

ðIN � dWÞ�1
� � ?

ðIN � dWÞ�1υ
:

ð15Þ

Multiplying both numerator and denominator by ðυ

?

υÞ�1
(Pace and

LeSage 2010) and using EðεjxÞ ¼ 0 leads to
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plim b̂ ¼
tr ðIN � dWÞ�1 ðIN � dWÞ�1

� � ?

ðIN � rWÞ�1

� �

tr ðIN � dWÞ�1
� � ?

ðIN � dWÞ�1

� � b

þ
tr ðIN � dWÞ�1 ðIN � dWÞ�1

� � ?

ðIN � rWÞ�1W

� �

tr ðIN � dWÞ�1
� � ?

ðIN � dWÞ�1

� � y:

ð16Þ

To see that terms in equation (16) exceed the direct impacts in equation

(14) for positive values of r and d, we can rewrite the traces in equation (16)

as the sum of the elements of the Hadamard product

plim b̂ ¼

P
ij MðdÞMðdÞ

?

�MðrÞ
� �

ij

tr MðdÞMðdÞ

?� � b þ

P
ij MðdÞMðdÞ

?

�MðrÞW
� �

ij

tr MðdÞMðdÞ

?� � y;

ð17Þ

where � denotes the Hadamard product, MðdÞ ¼ ðIN � dWÞ�1
, and

MðrÞ ¼ ðIN � rWÞ�1
. Now recall that MðdÞ ¼ IN þ dWþ d2W2 þ � � �,

thus all diagonal elements of MðdÞ > 1 and all off-diagonal elements of

MðdÞ � 0 for d > 0, therefore MðdÞMðdÞ

?

is a nonnegative matrix with all

diagonal elements > 1. Similarly, MðrÞ is nonnegative with diagonal ele-

ments > 1. It follows that

P
ij MðdÞMðdÞ

?

�MðrÞ
� �

ij
> tr MðdÞMðdÞ

?

�MðrÞ
� �

; ð18Þ

and using Eða � bÞ ¼ EðaÞEðbÞ þ Covða; bÞ shows that when taking only the

traces of equation (17) instead of the total sum (and leaving aside the positive

off-diagonal elements):

E
tr MðdÞMðdÞ

?

�MðrÞ
� �

trðMðdÞMðdÞ

?

Þ

0
@

1
A

¼ 1

N
tr MðrÞð Þ þ

Cov
�

diag
�
MðdÞMðdÞ

?�
; diag MðrÞð Þ

�
N�1tr MðdÞMðdÞ

?� � :

ð19Þ
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As both MðdÞ and MðrÞ are constructed from the same weights matrix W,

Cov
�

diag
�
MðdÞMðdÞ

?�
; diag MðrÞð Þ

�
> 0 for positive r; d. Thus, it fol-

lows from equations (18) and (19) that the first term of equation (17) exceeds

the first term of the direct impacts N�1tr MðrÞbð Þ for positive values of d and

r. Similarly, the second term of equation (17) exceeds the second term of the

direct impacts N�1tr MðrÞWyð Þ for positive values of d and r, which adds an

additional bias when y > 0. Thus, b̂OLS exceeds the direct impacts of

N�1tr MðrÞ½bþWy�ð Þ and is upwardly biased for positive values of r and

d. Furthermore, this bias in the impacts is a nonlinear function of the para-

meter estimates, thereby giving a strong motivation to compare the biases in

impacts rather than coefficients. Note that the first part of equation (17) goes

to N�1tr MðrÞbð Þ only if either r ¼ 0 or d ¼ 0 (leading to MðrÞ ¼ IN or

MðdÞ ¼ IN , respectively), and the second term goes to N�1tr MðrÞWyð Þ only

if d ¼ 0. Obviously, the latter part of the bias also disappears if y ¼ 0.

Note that the bias in the impacts as described above is not related to auto-

correlation in the disturbances l. Respectively, erroneously omitting spatial

autocorrelation in the disturbances if l > 0 would only lead to a loss of effi-

ciency. However, this is only true if the disturbances are independent of our

covariates. LeSage and Pace (2009)and Pace and LeSage (2010) showthat in the

presence of an omv and EðεjxÞ 6¼ 0, spatial correlation in the disturbances leads

to an amplification of the nonspatial omv bias. Replacing the random distur-

bance in equation (15) by ε ¼ gxþ �, where g defines the covariance between

the error term (or an omv) and the covariate x, adds an additional bias of the form

þ
tr MðdÞMðdÞ

?

MðrÞLðlÞ
� �

tr MðdÞ

?

MðdÞ
� � g ð20Þ

to equation (17). Following the same argument as above, equation (20) is

positive and> g for positive parameters r, d, l > 0, but also in the case of r,

d ¼ 0 and l > 0. The term equation (20) goes to g only if both r, l ¼ 0.

In sum, the discussion above provides some important conclusions regard-

ing the bias in nonspatial OLS models. First, if we agree that the unbiased

effect estimate of a change in xik on yik is given by the average direct impacts,

OLS provides unbiased estimates of the true effect even if the dependent

variable is spatially autocorrelated as long as the covariates are exogenous

and randomly distributed. Second, several quite realistic constellations of

spatial correlation exist in which nonspatial OLS produces biased estimates

741Rüttenauer



of the direct impacts. In particular, the nonspatial OLS estimator b̂OLS is

biased in the presence of either:

(1) Spatial autocorrelation in the dependent variable (r 6¼ 0) and spatial

autocorrelation in the covariate (d 6¼ 0). This bias increases with r,

d, and b.

(2) Local spatial spillover effects (y 6¼ 0) and spatial autocorrelation in

the covariate (d 6¼ 0). This is analogous to the omv bias resulting

from the omission of Wx. It increases with y and d, but additionally

with r if y 6¼ 0 and d 6¼ 0.

(3) An omv and EðεjxÞ 6¼ 0. This nonspatial omv bias g is amplified by

spatial dependence in the disturbances (l) and spatial autocorrelation

in the dependent variable (r) but also increases with positive values of

d if either r 6¼ 0 or l 6¼ 0. Obviously, it also increases with g.

Model Selection

By showing that the nonspatial OLS estimates are biased in some constella-

tions of spatial dependence, the previous section gives a strong motivation

for the use of spatial regression models. However, as described earlier, a

variety of spatial model specifications exist that can be used to account for

the spatial structure of the data. Thus, selecting the correct model specifica-

tion remains a crucial task in applied research.

Specification Tests

One way of selecting the model specification is the application of empirical

specification tests. In general, there are two different strategies: a specific-to-

general or a general-to-specific approach (Florax, Folmer, and Rey 2003;

Mur and Angulo 2009).

The specific-to-general approach is more common in spatial econo-

metrics. This approach starts with the most basic nonspatial model and tests

for possible misspecifications due to omitted autocorrelation in the error term

or the dependent variable. Therefore, Anselin et al. (1996) proposed to use

Lagrange multiplier (LM) tests for the hypotheses H0 : l ¼ 0 and

H0 : r ¼ 0, which are robust against the alternative source of spatial depen-

dence. The specific-to-general approach based on the robust LM test offers a

good performance in distinguishing between SAR, SEM, and nonspatial OLS

(Florax et al. 2003). Still, in their original paper, Anselin et al. (1996) already

note the declining power of the robust LMl test for spatial error dependence
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with increasing autocorrelation in the dependent variable (indicating some

uncertainty under a SAC-like DGP). Furthermore, Mur and Angulo (2009)

demonstrate strong drawbacks of the specific-to-general approach under

nonoptimal conditions like heteroscedasticity or endogeneity. Another short-

coming of this approach is its disregard of spatial dependence from local

spillover effects, as resulting from an SLX-like process. Cook et al. (2015),

for instance, show theoretically that an SLX-like dependence structure leads

to the rejection of both hypotheses H0 : l ¼ 0 and H0 : r ¼ 0, though no

autocorrelation is present (see also Elhorst and Halleck Vega, 2017). This is

also validated by simulation results: The LM test is not helpful in distinguish-

ing between SDM- and SDEM-like processes and produces heavily biased

results in case of a GNS-like structure (see Table C1 of the Online Appendix

[which can be found at http://smr.sagepub.com/supplemental/]).

The general-to-specific approach depicts the opposite method of specifi-

cation search. This approach starts with the most general model and stepwise

imposes restrictions on the parameters of this general model. In theory, one

would start with a GNS specification and subsequently restrict the model to

simplified specifications based on the significance of parameters in the GNS.

The problem with this strategy is that the GNS is only weakly identified and,

thus, is of little help in selecting the correct restrictions (Burridge et al.,

2016). The most intuitive alternative would be to start with one of the

two-source models SDM, SDEM, or SAC. This, however, bears the risk of

imposing the wrong restriction in the first place (Cook et al., 2015). Further-

more, Cook et al. (2015) show that more complicated restrictions are neces-

sary to derive all single-source models from SDEM or SAC specifications.

Thus, both ways of specification testing suffer from different sources of

uncertainty, thereby making it hard to develop a general guideline for finding

the correct model specification empirically. Consequently, scholars have

developed other strategies to select the spatial model specification.

Alternative Strategies

Some argue that the best way of choosing the appropriate model specification

is to exclude one or more sources of spatial dependence—autocorrelation in

the dependent variable, autocorrelation in the disturbances, or spatial spil-

lover effects of the covariates—by design (Gibbons and Overman 2012;

Gibbons et al. 2015). Natural experiments are probably the best way of

making one or more sources of spatial dependence unlikely, thereby restrict-

ing the model alternatives to a subset of all available models. However, the

opportunities to use natural experiments are restricted in social sciences,
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making it a favorable but often impractical way of model selection. There-

fore, Cook et al. (2015) argue that theoretical considerations should guide the

model selection. First, it might be possible to rule out some sources of spatial

dependence by theory and thus restricting the specification alternatives to a

subset. Second, theoretical mechanisms might guide the choice of either

global or local spillover effects.

Still, others (Elhorst 2014; LeSage 2014; LeSage and Pace 2009) argue

that there are strong analytical reasons to restrict the model specifications to a

subset, as the SDM subsumes the SLX and SAR model, and the SDEM

subsumes SLX and SEM. It is easily observed that SDM reduces to SLX

if r ¼ 0 and to SAR if y ¼ 0, while the SDEM reduces to SLX if l ¼ 0 and

to SEM if y ¼ 0. Less intuitively, Anselin (1988) has also shown that the

SDM subsumes the SEM. Therefore, we can express the reduced form of

equation (2) and rearrange terms:

y ¼ Xβþ ðIN � lWÞ�1ε

ðIN � lWÞy ¼ ðIN � lWÞXβþ ε

ðIN � lWÞy ¼ Xβ� lWXβþ ε

y ¼ ðIN � lWÞ�1ðXβþWxθþ εÞ:

ð21Þ

Thus, the SEM constitutes a special case of an SDM with the relative

simple restriction θ ¼ �lβ, meaning direct and indirect effects are con-

strained to a common factor (Anselin 1988, 2003). The fact that SDM sub-

sumes SAR, SLX, and SEM leads to the conclusion that applied research

should only consider SDM and SDEM as model specifications (LeSage

2014). Especially in the case of a likely omv bias, LeSage and Pace

(2009:68) argue in favor of using the SDM.

Nonetheless, others propose to use the SLX specification as point of depar-

ture (Gibbons and Overman 2012; Halleck Vega and Elhorst 2015). First, scho-

lars have argued that SAC and SDM models are only weakly identified in

practice (Gibbons and Overman 2012; Pinkse and Slade 2010). Second, the

global spillover specification in SAR, SAC, and SDM often seems to be theo-

retically implausible. Recall, for instance, the example of “diffusing” house

prices, where the house price in one district influences house prices in neighbor-

ing districts. Specifying a SAR-like process means that house prices directly

influence each other. Yet, it might be more plausible that house prices are driven

by the demand within the focal but also by the demand in neighboring units,

which reflects an SLX-like structure. Third, the SLX is computationally effi-

cient, as it can be estimated by using LS. Fourth, it turns attention back to the
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question of whether X and WX are exogenous, which should be the main focus

when investigating the dependence between X and y. Furthermore, SLX, SDM,

and SDEM share the advantage that all three models estimate flexible indirect

spillover effects, which are not bound to a common ratio between direct and

indirect effects for all covariates (as in SAR and SAC).

Monte Carlo Experiment

As outlined in the previous section, diverging recommendations exist for select-

ing the model in applied research. To further improve the discussion on the

selection of spatial model specifications, this study compares the performance

of different spatial model specifications by using a Monte Carlo experiment.

Following the discussion above, a Monte Carlo experiment should consider

several aspects to provide implications for applied research. First, as proposed

by LeSage and Pace (2018), it is important to evaluate the bias of the impacts

rather than the point estimates. The impacts are the measures of interest in

applied research and the bias in impacts follows a nonlinear function of the bias

in parameter estimates. Second, it is important to incorporate more than one

covariate, as bias in one parameterbk could be counterbalanced by a bias inr,yk

or l, thus producing unbiased impacts for covariate k. However, a counter-

balancing bias in r or l could, in turn, affect the impacts of other covariates,

as the autoregressive parameters affect all covariates. Third, we should evaluate

the performance in two different worlds, one without omv bias and one with

omv bias, as this is likely to occur in applied research.

The DGP of the Monte Carlo simulation follows a GNS and is shown

in equations (22)–(24), where υk and ε are independent and randomly

distributed Nð0;s2
uÞ and Nð0;s2

eÞ with a mean of zero, and xk is the kth

column-vector of X for k ¼ 1; : : : ;K covariates (K is fixed at 2 in the

simulations). The parameter r represents the autocorrelation in

the dependent variable, l the autocorrelation in the disturbances, and

dk the autocorrelation in covariate k.

y ¼ rWyþ XβþWXθþ u; ð22Þ

u ¼ lWuþ Xγ þ ε; ð23Þ

xk ¼ dkWxk þ υk : ð24Þ

The parameter-vector γ in equation (23) specifies the correlation between

X and the disturbance vector u, thereby defining the strength of an omv bias.

In reduced form, this DGP can be written as:
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y ¼ ðIN � rWÞ�1
h
ðIN � dkWÞ�1υkbk þWðIN � dkWÞ�1υkyk

þ ðIN � lWÞ�1 ðIN � dkWÞ�1υkgk þ ε
� �i

:
ð25Þ

The parameter vector β was fixed at β ¼ 0:2 0:5ð Þ

?

, and the

noise parameters were fixed at s2
u, s2

e ¼ 1 for all trials. All other

parameters vary between the following two options for each parameter

(vector):

� r 2 0; 0:5f g,
� l 2 f0; 0:5g,
� δ 2 0 0ð Þ

?

; 0:4 0:7ð Þ

?n o
,

� θ 2 0 0ð Þ

?

; 0:1 0:8ð Þ

?n o
,

� γ 2 0 0ð Þ

?

; 0:3 0ð Þ

?n o
,

leading to a total of 32 distinct combinations. Note that this selection of

parameters intentionally violates the common ratio assumption between

direct and indirect effects, as this should be a more common case in practical

research. All combinations were simulated in 1,000 trials, with the same

starting seed for each combination. All spatial models were estimated using

R’s package spdep (Bivand and Piras 2015).5

The simulations build on a square grid of 900 observations and use a

row-normalized (“queen”) contiguity weights matrix W, where all units

sharing a common border are defined as neighbors, thus wij > 0 for

contiguous units and wij ¼ 0 otherwise. This setting leads to an average

of 7.6 neighbors. Note that many alternative specifications may be cho-

sen and that the choice should be made based on the assumed theoretical

mechanisms (Neumayer and Plümper 2016). However, contiguity is the

most commonly used weights specification (e.g., Elhorst and Halleck

Vega 2017) and has been shown to be the best choice when no theore-

tical or empirical reasons justify a specific form of connectivity (Stakho-

vych and Bijmolt 2009). Furthermore, the contiguity weights matrix

exhibits a high level of similarity with a wide range of k nearest neigh-

bors matrices (LeSage and Pace 2014), as contiguous neighbors are (most

likely) also the nearest neighbors. In accordance, additional simulations

using different specifications of W lead to identical conclusions as pre-

sented in the following section.6
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Results Without Omv

Figure 1 shows the bias of the direct and indirect impacts for the simulations

without a nonspatial omv bias. Respective numbers and the root mean

squared error are shown in Online Appendix A (which can be found at

http://smr.sagepub.com/supplemental/). Several findings can be observed

in the plot.

First and less surprising, all models perform reasonably well when cor-

rectly specifying the DGP. For instance, when the DGP follows a SAR-like

process (e.g., lines 2 and 4), the SAR model yields very precise estimates of

direct and indirect impacts. Similarly, SDEM yields the lowest bias if the

DGP contains positive error correlation l > 0 and positive local spillover

effects θ > 0, but no correlation in the dependent variable r ¼ 0 (see lines 13

and 15). These findings hold throughout all model specifications (though

SAC could be seen as an exception).

Second, OLS yields an unbiased estimate of the direct impacts in many

situations. The results confirm the theoretical predictions outlined above:

OLS estimates of the direct impacts are only biased in case of either positive

autocorrelation in the dependent variable r > 0 and autocorrelation in the

covariate dk > 0 or local spillover effects yk > 0 and autocorrelation in the

covariate dk > 0. Furthermore, this bias is rather moderate for low values of

d, y, and b as can been seen in the first column of Figure 1. Note, however,

that the bias is a conservative estimate because the simulations use a rela-

tively symmetric neighbors weights matrix. For instance, when increasing

the variance in the number of neighbors per unit (thereby increasing the

covariance between the diagonals of the inverted matrices MðdÞ and

MðrÞ), the bias in nonspatial OLS becomes more severe (see equation

[19] for the theoretical explanation).

Third, SLX, SDM, and SDEM all provide quite accurate estimates of the

direct impacts (most visible in column 2). SAR, SEM, and SAC, in contrast,

yield some drawbacks: Especially in the presence of local spillover effects,

these three specifications are biased (see lower part of Figure 1). Further-

more, SAR and SEM suffer from bias if autocorrelation in the disturbance

and autocorrelation in the dependent variable are present simultaneously

(see lines 6 and 8). Although SLX is downwardly biased in case of auto-

correlation in the dependent variable and the covariates (e.g., lines 12 and

16), and SDM and SDEM yield some bias in case of a GNS-like process

(lines 14 and 16), those biases are rather moderate. This indicates that SLX,

SDM, and SDEM are most robust against misspecification regarding the

direct impacts.
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Fourth, several differences exist regarding the indirect impacts. Most

obviously, the often used SAR specification suffers from considerable

bias: It overestimates indirect impacts in case of autocorrelation in the

disturbances and offers biased estimates if local spillover effects exist

(which are not restricted to a common ratio). The latter also applies to

SAC: Although SAC offers relatively accurate estimates for x2, it over-

estimates indirect impacts for x1. Regarding the remaining three specifi-

cations—SLX, SDM, and SDEM—conclusions are less obvious. SDM

and SDEM suffer from large bias for high values of θ (see x2) if the

DGP follows a GNS-like process (lines 14 and 16): SDM overestimates

the indirect impacts, while SDEM underestimates the indirect impacts. In

addition, SDM performs badly if the true DGP is SDEM (line 13), and

SDEM performs badly if the true DGP is SDM (line 10), whereas the

bias increases with higher values of yk in both cases. Similar to SDEM,

SLX underestimates the indirect impacts in presence of global spillovers/

autocorrelation in the dependent variable.

For a better comparison, Figure 2 shows the bias of the indirect impacts in

case of a GNS-like processes for different strengths of r and l (for simpli-

city, we restrict the autocorrelation in covariates to zero and keep the local

spillover effects fixed at θ ¼ ð0:1; 0:8Þ

?

). Respective numbers are shown in

Online Appendix B (which can be found at http://smr.sagepub.com/supple

mental/). Three findings are particularly interesting. First, in a GNS-like

situation, the bias in SDM grows with increasing autocorrelation in y (r)

and increasing autocorrelation in the disturbances (l). Second, the bias in

SLX and SDEM increases with higher values of r but is unaffected from the

strength of l. Third, though SLX and SDEM suffer from the same problem,

the bias from omitting global autocorrelation is less severe in SLX than in

SDEM. Thus, the SLX outperforms SDEM. Furthermore, SLX outperforms

SDM in most situations; only if the autocorrelation in the dependent variable

is much stronger than the autocorrelation in the disturbances (r ¼ 0:9,

l ¼ 0:3), SDM yields lower bias than SLX.7

In sum, the results of the Monte Carlo experiments show that the three

flexible model specifications of SLX, SDM, and SDEM offer an accurate

estimate of the direct impacts, and all three specifications are relatively

robust against misspecification regarding the direct impacts. However,

results regarding the indirect impacts cast some doubt on the advice to

consider only SDM or SDEM if no prior knowledge about the cause of spatial

correlation is available. Especially in a “mixed world” (where the true DGP

is GNS), the results reveal that SLX offers a good alternative, which is more

robust against misspecification in many situations.
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Results With Omv

So far, we have only considered the situation where X is perfectly exogenous

in a nonspatial sense. However, in applied research, one might often face

situations in which the covariates might be correlated with the disturbances.

Thus, simulations in Figure 3 replicate previous simulations with an omv

correlated with x1 γ ¼ 0:3 0ð Þ

?� �
in a nonspatial way.

Comparing column 1 of Figures 1 and 3 reveals that OLS suffers from a

larger bias due to spatial autocorrelation if x is correlated with the distur-

bance, confirming results by Pace and LeSage (2010). Regarding the direct

impacts of variable x1, which is affected by the omv bias, SEM exhibits the

best estimation results. Yet, the good performance of SEM regarding one

variable (x1) is somewhat offset by a relatively large bias in the second

variable (x2), as the SEM tends to underestimate the impact of the second

variable not affected by the omv in case of positive spatial autocorrelation in

y. As in previous results, the bias in SLX, SDM, and SDEM is comparable

and lower than in the remaining specifications.

Turning to the indirect impacts, SDEM reduces the bias in the variable

affected by the omv compared to other model specifications. Still, it suffers

(as is the case without omv) from a bad performance in the second variable if

the DGP contains an autoregressive parameter of the dependent variable

(r > 0). Furthermore, it becomes apparent that the underestimation of the

indirect impacts in case of an GNS-like process without an omv bias (Fig-

ure 1) is somewhat counterbalanced by the positive omv bias leading to an

overestimation of the impacts. For instance, in additional Monte Carlo

experiments defining a downward bias (gx1 ¼ �0:1), SDEM amplifies the

downward bias. Thus, it seems to depend on the constellation between the

impacts and the omv bias whether SDEM reduces or increases the bias.

However, a bias toward zero seems to be less severe than an upwardly biased

parameter estimate. Another interesting finding is that the estimates of indi-

rect impacts in SDM are affected most strongly by the omv bias. Comparing

column 3 in Figures 1 and 3 reveals that estimates in SDM show stronger

changes than estimates of SLX and SDEM due to the nonspatial omv (e.g.,

lines 8 and 14). In sum, the second set of Monte Carlo simulations demon-

strates that indirect impact estimates of SDEM and SLX are less affected by a

nonspatial omv bias than SDM. Furthermore, in specific situations, SDEM

may even help to reduce the nonspatial bias.

Additional simulations (available in the Online Supplement) reveal that

the conclusions made above are robust to different variations of the
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parameters chosen in the DGP.8 Obviously, as can be seen in Figure 2, the

performance of SDM increases with increasing values of r relative to SDEM

and SLX and decreases with increasing values of l (and vice versa). Still,

SDM, SDEM, and SLX yield nearly equal biases regarding the direct

impacts, while SLX and SDEM outperform the SDM in terms of the indirect

impacts.

Conclusion

The increasing availability of spatial or georeferenced data fosters the pos-

sibility of investigating spatial research questions. However, analyzing spa-

tial data also requires careful consideration regarding the model

specification. As has been shown theoretically and empirically, different

constellations of the data exist, which lead to biased estimates in nonspatial

OLS models. Furthermore, nonspatial models disregard the spatial processes

inherent in the data, thereby loosing interesting information. To overcome

these problems, several spatial model specifications accounting for the spa-

tial dependence can be employed.

Nevertheless, the variety of specifications also comes with the problem of

selecting the correct specification in applied research, and specification tests

are of little help in many situations. Therefore, this study employs a Monte

Carlo experiment to systematically compare the bias of the most common

spatial regression models in different situations of misspecification. In addi-

tion, this study extends previous simulations by relying on the impacts rather

than the regression coefficients, as the impacts are the parameters of interest

in applied research.

In line with previous studies (Elhorst 2014; LeSage 2014; LeSage and Pace

2009), the Monte Carlo experiment reveals that the most commonly used

SAR, SEM, and SAC specifications are outperformed by the more flexible

specifications of SDM, SDEM, and SLX. Still, the results contradict the rec-

ommendation to consider only SDM and SDEM in applied research. While all

three SDM, SDEM, and SLX show only marginal differences in the direct

impacts, there are notable differences in the indirect spillover effects. Espe-

cially in a “mixed world,” in which the DGP follows a GNS-like structure,

SLX produces less biased estimates of indirect impacts than SDM and SDEM.

Note that this “mixed world” resembles a very realistic scenario. In our exam-

ple, one could argue in favor of all spatial processes: House prices in one

district may directly influence house prices in neighboring districts, house

prices may depend on environmental quality in the focal and in contiguous

districts, and clustered unobservables are likely to influence the house prices.
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Although SDEM can help to reduce an upward bias due to omvs in the pres-

ence of nonspatial endogeneity, this finding needs further investigation, as

conclusions seem to depend on the constellation of impacts and omv bias.

In sum, the results of this article support the claim recently made by

Elhorst and Halleck Vega (2017) and Halleck Vega and Elhorst (2015):

If no theoretical reasons justify a specific model, it might be a better

option to rely on the simple SLX specification rather than adopting the

more complex SDM in applied research. Especially if it is not possible to

eliminate one of the three sources of spatial dependence, SLX seems to

be a good choice. Furthermore, the SLX is computational simple and

intuitively interpretable. In contrast to global spillover effects in SDM,

the local spillover effects can be interpreted as the effects of the spatially

weighted neighbors (as defined by W). Beyond that, the spatial spillover

effects in SLX can also be “globalized” to some extent by including

separate terms for second or even higher order neighbors, which, in

addition, would be a more flexible function than higher order terms of

one autoregressive parameter r. Moreover, Elhorst and Halleck Vega

(2017) show that the SLX—in contrast to other specifications—allows

to empirically parameterize the weights matrix W, which can lead to

improved estimates of the spillover effects. Taken together, SLX cer-

tainly provides a worthwhile alternative to SDM and SDEM.

Still, it is important to keep in mind that spatial models only give para-

meter estimates for (conditional) correlations. Simply estimating a model

using cross-sectional observational data hardly tells anything about the cau-

sal mechanisms underlying these correlations. The causal process underlying

the spatial correlation can be the result of (1) spatial interdependence in the

dependent variable, (2) spillover effects in the covariates, or (3) common

unobserved shocks. To identify the (spatial) causal effects between two

variables of interest, it is necessary to use designs or methods following the

counterfactual approach like natural experiments (Angrist and Pischke 2009,

2015; Morgan and Winship 2015). However, this applies to all empirical

research, including nonspatial observational studies. Thus, as is the case with

all observational studies, spatial models can provide interesting insights into

the correlational structure of the data but can only be a first step in evaluating

the causal mechanisms.
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Notes

1. The model intercept is omitted in all models for simplicity.

2. Gibbons and Overman (2012) even argue that the spatial Durbin model is only

weakly identified in practice.

3. Although previous literature (e.g., Halleck Vega and Elhorst 2015; LeSage and

Pace 2009) has established the notation of direct and indirect impacts, it is impor-

tant to note that also the direct impacts comprise a spatial “multiplier” component

if we specify an endogenous lagged depended variable, as a change in xi influences

yi, which influences yj, which in turn influences yi (see also equation [10]).

4. A power series of
P1

k¼0 W
k converges to ðI�WÞ�1

if the maximum absolute

eigenvalue of W < 1, which is ensured by standardizing W.

5. Since April 2019, the model fitting functions have been moved from spdep to the

package spatialreg.

6. See Figure D1 in Online Appendix (which can be found at http://smr.sagepub.

com/supplemental/) for results using inverse distance weighted 10-nearest neigh-

bors and Figure D2 in Online Appendix (which can be found at http://smr.sagepub.

com/supplemental/) for results with maximum eigenvalue-normalized inverse dis-

tances weights (cutoff at 100 neighbors for computational efficiency) and a dis-

tance decay factor set to 1. Although, in line with previous research (Stakhovych

and Bijmolt 2009), the dispersion of the indirect impacts strongly increases with

higher levels of connectivity (see FigureD2 in Online Appendix [which can be

755Rüttenauer

https://github.com/ruettenauer/Reproduction-Material-Spatial-Monte-Carlo-Experiments
https://github.com/ruettenauer/Reproduction-Material-Spatial-Monte-Carlo-Experiments
https://orcid.org/0000-0001-5747-9735
https://orcid.org/0000-0001-5747-9735
https://orcid.org/0000-0001-5747-9735
http://smr.sagepub.com/supplemental/
http://smr.sagepub.com/supplemental/


found at http://smr.sagepub.com/supplemental/]), the conclusions regarding the

relative performance of the different specifications remain unchanged. Additional

simulations using the Oklahoma census tract shape file (N ¼ 1,046) instead of a

symmetric grid produced identical results (not shown).

7. Note that the spatial autoregressive combined model yields relatively low biases

for the indirect impacts in general nesting spatial-like processes, but at the same

time produces relative large biases in the direct impacts (see Table B1 in Online

Appendix [which can be found at http://smr.sagepub.com/supplemental/]).

8. Variations were specified as follows: r 2 f0:3; 0:7g, l 2 f0:3; 0:7g,
θ ¼ 0:1 0:4ð Þ

?

, and γ 2 f �0:1 0ð Þ

?

; �0:3 0ð Þ

?

; 0:3 0:2ð Þ

?

g.
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N. Buliung, and S. Dall’erba. Berlin, Germany: Springer.

Pinkse, J. and M. E. Slade. 2010. “The Future of Spatial Econometrics.” Journal of

Regional Science 50(1):103-17.

Reardon, S. F., S. A. Matthews, D. O’Sullivan, B. A. Lee, G. Firebaugh, C. R. Farrell,

and K. Bischoff. 2008. “The Geographic Scale of Metropolitan Racial Segrega-

tion.” Demography 45(3):489-514.
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